Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
H
How Approximation Affects Parallelization
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Issue analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Nathanael Sandy
How Approximation Affects Parallelization
Commits
891b9d65
Commit
891b9d65
authored
6 years ago
by
Daniel Maier
Browse files
Options
Downloads
Patches
Plain Diff
rodinia benchmark added
parent
5c962a9c
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
codes/hotspot/hotspot_openmp.cpp
+334
-0
334 additions, 0 deletions
codes/hotspot/hotspot_openmp.cpp
with
334 additions
and
0 deletions
codes/hotspot/hotspot_openmp.cpp
0 → 100755
+
334
−
0
View file @
891b9d65
#include
<stdio.h>
#include
<stdlib.h>
#include
<omp.h>
#include
<sys/time.h>
// Returns the current system time in microseconds
long
long
get_time
()
{
struct
timeval
tv
;
gettimeofday
(
&
tv
,
NULL
);
return
(
tv
.
tv_sec
*
1000000
)
+
tv
.
tv_usec
;
}
using
namespace
std
;
#define BLOCK_SIZE 16
#define BLOCK_SIZE_C BLOCK_SIZE
#define BLOCK_SIZE_R BLOCK_SIZE
#define STR_SIZE 256
/* maximum power density possible (say 300W for a 10mm x 10mm chip) */
#define MAX_PD (3.0e6)
/* required precision in degrees */
#define PRECISION 0.001
#define SPEC_HEAT_SI 1.75e6
#define K_SI 100
/* capacitance fitting factor */
#define FACTOR_CHIP 0.5
#define OPEN
//#define NUM_THREAD 4
typedef
float
FLOAT
;
/* chip parameters */
const
FLOAT
t_chip
=
0.0005
;
const
FLOAT
chip_height
=
0.016
;
const
FLOAT
chip_width
=
0.016
;
#ifdef OMP_OFFLOAD
#pragma offload_attribute(push, target(mic))
#endif
/* ambient temperature, assuming no package at all */
const
FLOAT
amb_temp
=
80.0
;
int
num_omp_threads
;
/* Single iteration of the transient solver in the grid model.
* advances the solution of the discretized difference equations
* by one time step
*/
void
single_iteration
(
FLOAT
*
result
,
FLOAT
*
temp
,
FLOAT
*
power
,
int
row
,
int
col
,
FLOAT
Cap_1
,
FLOAT
Rx_1
,
FLOAT
Ry_1
,
FLOAT
Rz_1
,
FLOAT
step
)
{
FLOAT
delta
;
int
r
,
c
;
int
chunk
;
int
num_chunk
=
row
*
col
/
(
BLOCK_SIZE_R
*
BLOCK_SIZE_C
);
int
chunks_in_row
=
col
/
BLOCK_SIZE_C
;
int
chunks_in_col
=
row
/
BLOCK_SIZE_R
;
#ifdef OPEN
#ifndef __MIC__
omp_set_num_threads
(
num_omp_threads
);
#endif
#pragma omp parallel for shared(power, temp, result) private(chunk, r, c, delta) firstprivate(row, col, num_chunk, chunks_in_row) schedule(static)
#endif
for
(
chunk
=
0
;
chunk
<
num_chunk
;
++
chunk
)
{
int
r_start
=
BLOCK_SIZE_R
*
(
chunk
/
chunks_in_col
);
int
c_start
=
BLOCK_SIZE_C
*
(
chunk
%
chunks_in_row
);
int
r_end
=
r_start
+
BLOCK_SIZE_R
>
row
?
row
:
r_start
+
BLOCK_SIZE_R
;
int
c_end
=
c_start
+
BLOCK_SIZE_C
>
col
?
col
:
c_start
+
BLOCK_SIZE_C
;
if
(
r_start
==
0
||
c_start
==
0
||
r_end
==
row
||
c_end
==
col
)
{
for
(
r
=
r_start
;
r
<
r_start
+
BLOCK_SIZE_R
;
++
r
)
{
for
(
c
=
c_start
;
c
<
c_start
+
BLOCK_SIZE_C
;
++
c
)
{
/* Corner 1 */
if
(
(
r
==
0
)
&&
(
c
==
0
)
)
{
delta
=
(
Cap_1
)
*
(
power
[
0
]
+
(
temp
[
1
]
-
temp
[
0
])
*
Rx_1
+
(
temp
[
col
]
-
temp
[
0
])
*
Ry_1
+
(
amb_temp
-
temp
[
0
])
*
Rz_1
);
}
/* Corner 2 */
else
if
((
r
==
0
)
&&
(
c
==
col
-
1
))
{
delta
=
(
Cap_1
)
*
(
power
[
c
]
+
(
temp
[
c
-
1
]
-
temp
[
c
])
*
Rx_1
+
(
temp
[
c
+
col
]
-
temp
[
c
])
*
Ry_1
+
(
amb_temp
-
temp
[
c
])
*
Rz_1
);
}
/* Corner 3 */
else
if
((
r
==
row
-
1
)
&&
(
c
==
col
-
1
))
{
delta
=
(
Cap_1
)
*
(
power
[
r
*
col
+
c
]
+
(
temp
[
r
*
col
+
c
-
1
]
-
temp
[
r
*
col
+
c
])
*
Rx_1
+
(
temp
[(
r
-
1
)
*
col
+
c
]
-
temp
[
r
*
col
+
c
])
*
Ry_1
+
(
amb_temp
-
temp
[
r
*
col
+
c
])
*
Rz_1
);
}
/* Corner 4 */
else
if
((
r
==
row
-
1
)
&&
(
c
==
0
))
{
delta
=
(
Cap_1
)
*
(
power
[
r
*
col
]
+
(
temp
[
r
*
col
+
1
]
-
temp
[
r
*
col
])
*
Rx_1
+
(
temp
[(
r
-
1
)
*
col
]
-
temp
[
r
*
col
])
*
Ry_1
+
(
amb_temp
-
temp
[
r
*
col
])
*
Rz_1
);
}
/* Edge 1 */
else
if
(
r
==
0
)
{
delta
=
(
Cap_1
)
*
(
power
[
c
]
+
(
temp
[
c
+
1
]
+
temp
[
c
-
1
]
-
2.0
*
temp
[
c
])
*
Rx_1
+
(
temp
[
col
+
c
]
-
temp
[
c
])
*
Ry_1
+
(
amb_temp
-
temp
[
c
])
*
Rz_1
);
}
/* Edge 2 */
else
if
(
c
==
col
-
1
)
{
delta
=
(
Cap_1
)
*
(
power
[
r
*
col
+
c
]
+
(
temp
[(
r
+
1
)
*
col
+
c
]
+
temp
[(
r
-
1
)
*
col
+
c
]
-
2.0
*
temp
[
r
*
col
+
c
])
*
Ry_1
+
(
temp
[
r
*
col
+
c
-
1
]
-
temp
[
r
*
col
+
c
])
*
Rx_1
+
(
amb_temp
-
temp
[
r
*
col
+
c
])
*
Rz_1
);
}
/* Edge 3 */
else
if
(
r
==
row
-
1
)
{
delta
=
(
Cap_1
)
*
(
power
[
r
*
col
+
c
]
+
(
temp
[
r
*
col
+
c
+
1
]
+
temp
[
r
*
col
+
c
-
1
]
-
2.0
*
temp
[
r
*
col
+
c
])
*
Rx_1
+
(
temp
[(
r
-
1
)
*
col
+
c
]
-
temp
[
r
*
col
+
c
])
*
Ry_1
+
(
amb_temp
-
temp
[
r
*
col
+
c
])
*
Rz_1
);
}
/* Edge 4 */
else
if
(
c
==
0
)
{
delta
=
(
Cap_1
)
*
(
power
[
r
*
col
]
+
(
temp
[(
r
+
1
)
*
col
]
+
temp
[(
r
-
1
)
*
col
]
-
2.0
*
temp
[
r
*
col
])
*
Ry_1
+
(
temp
[
r
*
col
+
1
]
-
temp
[
r
*
col
])
*
Rx_1
+
(
amb_temp
-
temp
[
r
*
col
])
*
Rz_1
);
}
result
[
r
*
col
+
c
]
=
temp
[
r
*
col
+
c
]
+
delta
;
}
}
continue
;
}
for
(
r
=
r_start
;
r
<
r_start
+
BLOCK_SIZE_R
;
++
r
)
{
#pragma omp simd
for
(
c
=
c_start
;
c
<
c_start
+
BLOCK_SIZE_C
;
++
c
)
{
/* Update Temperatures */
result
[
r
*
col
+
c
]
=
temp
[
r
*
col
+
c
]
+
(
Cap_1
*
(
power
[
r
*
col
+
c
]
+
(
temp
[(
r
+
1
)
*
col
+
c
]
+
temp
[(
r
-
1
)
*
col
+
c
]
-
2.
f
*
temp
[
r
*
col
+
c
])
*
Ry_1
+
(
temp
[
r
*
col
+
c
+
1
]
+
temp
[
r
*
col
+
c
-
1
]
-
2.
f
*
temp
[
r
*
col
+
c
])
*
Rx_1
+
(
amb_temp
-
temp
[
r
*
col
+
c
])
*
Rz_1
));
}
}
}
}
#ifdef OMP_OFFLOAD
#pragma offload_attribute(pop)
#endif
/* Transient solver driver routine: simply converts the heat
* transfer differential equations to difference equations
* and solves the difference equations by iterating
*/
void
compute_tran_temp
(
FLOAT
*
result
,
int
num_iterations
,
FLOAT
*
temp
,
FLOAT
*
power
,
int
row
,
int
col
)
{
#ifdef VERBOSE
int
i
=
0
;
#endif
FLOAT
grid_height
=
chip_height
/
row
;
FLOAT
grid_width
=
chip_width
/
col
;
FLOAT
Cap
=
FACTOR_CHIP
*
SPEC_HEAT_SI
*
t_chip
*
grid_width
*
grid_height
;
FLOAT
Rx
=
grid_width
/
(
2.0
*
K_SI
*
t_chip
*
grid_height
);
FLOAT
Ry
=
grid_height
/
(
2.0
*
K_SI
*
t_chip
*
grid_width
);
FLOAT
Rz
=
t_chip
/
(
K_SI
*
grid_height
*
grid_width
);
FLOAT
max_slope
=
MAX_PD
/
(
FACTOR_CHIP
*
t_chip
*
SPEC_HEAT_SI
);
FLOAT
step
=
PRECISION
/
max_slope
/
1000.0
;
FLOAT
Rx_1
=
1.
f
/
Rx
;
FLOAT
Ry_1
=
1.
f
/
Ry
;
FLOAT
Rz_1
=
1.
f
/
Rz
;
FLOAT
Cap_1
=
step
/
Cap
;
#ifdef VERBOSE
fprintf
(
stdout
,
"total iterations: %d s
\t
step size: %g s
\n
"
,
num_iterations
,
step
);
fprintf
(
stdout
,
"Rx: %g
\t
Ry: %g
\t
Rz: %g
\t
Cap: %g
\n
"
,
Rx
,
Ry
,
Rz
,
Cap
);
#endif
#ifdef OMP_OFFLOAD
int
array_size
=
row
*
col
;
#pragma omp target \
map(temp[0:array_size]) \
map(to: power[0:array_size], row, col, Cap_1, Rx_1, Ry_1, Rz_1, step, num_iterations) \
map( result[0:array_size])
#endif
{
FLOAT
*
r
=
result
;
FLOAT
*
t
=
temp
;
for
(
int
i
=
0
;
i
<
num_iterations
;
i
++
)
{
#ifdef VERBOSE
fprintf
(
stdout
,
"iteration %d
\n
"
,
i
++
);
#endif
single_iteration
(
r
,
t
,
power
,
row
,
col
,
Cap_1
,
Rx_1
,
Ry_1
,
Rz_1
,
step
);
FLOAT
*
tmp
=
t
;
t
=
r
;
r
=
tmp
;
}
}
#ifdef VERBOSE
fprintf
(
stdout
,
"iteration %d
\n
"
,
i
++
);
#endif
}
void
fatal
(
char
*
s
)
{
fprintf
(
stderr
,
"error: %s
\n
"
,
s
);
exit
(
1
);
}
void
writeoutput
(
FLOAT
*
vect
,
int
grid_rows
,
int
grid_cols
,
char
*
file
)
{
int
i
,
j
,
index
=
0
;
FILE
*
fp
;
char
str
[
STR_SIZE
];
if
(
(
fp
=
fopen
(
file
,
"w"
))
==
0
)
printf
(
"The file was not opened
\n
"
);
for
(
i
=
0
;
i
<
grid_rows
;
i
++
)
for
(
j
=
0
;
j
<
grid_cols
;
j
++
)
{
sprintf
(
str
,
"%d
\t
%g
\n
"
,
index
,
vect
[
i
*
grid_cols
+
j
]);
fputs
(
str
,
fp
);
index
++
;
}
fclose
(
fp
);
}
void
read_input
(
FLOAT
*
vect
,
int
grid_rows
,
int
grid_cols
,
char
*
file
)
{
int
i
,
index
;
FILE
*
fp
;
char
str
[
STR_SIZE
];
FLOAT
val
;
fp
=
fopen
(
file
,
"r"
);
if
(
!
fp
)
fatal
(
"file could not be opened for reading"
);
for
(
i
=
0
;
i
<
grid_rows
*
grid_cols
;
i
++
)
{
fgets
(
str
,
STR_SIZE
,
fp
);
if
(
feof
(
fp
))
fatal
(
"not enough lines in file"
);
if
((
sscanf
(
str
,
"%f"
,
&
val
)
!=
1
)
)
fatal
(
"invalid file format"
);
vect
[
i
]
=
val
;
}
fclose
(
fp
);
}
void
usage
(
int
argc
,
char
**
argv
)
{
fprintf
(
stderr
,
"Usage: %s <grid_rows> <grid_cols> <sim_time> <no. of threads><temp_file> <power_file>
\n
"
,
argv
[
0
]);
fprintf
(
stderr
,
"
\t
<grid_rows> - number of rows in the grid (positive integer)
\n
"
);
fprintf
(
stderr
,
"
\t
<grid_cols> - number of columns in the grid (positive integer)
\n
"
);
fprintf
(
stderr
,
"
\t
<sim_time> - number of iterations
\n
"
);
fprintf
(
stderr
,
"
\t
<no. of threads> - number of threads
\n
"
);
fprintf
(
stderr
,
"
\t
<temp_file> - name of the file containing the initial temperature values of each cell
\n
"
);
fprintf
(
stderr
,
"
\t
<power_file> - name of the file containing the dissipated power values of each cell
\n
"
);
fprintf
(
stderr
,
"
\t
<output_file> - name of the output file
\n
"
);
exit
(
1
);
}
int
main
(
int
argc
,
char
**
argv
)
{
int
grid_rows
,
grid_cols
,
sim_time
,
i
;
FLOAT
*
temp
,
*
power
,
*
result
;
char
*
tfile
,
*
pfile
,
*
ofile
;
/* check validity of inputs */
if
(
argc
!=
8
)
usage
(
argc
,
argv
);
if
((
grid_rows
=
atoi
(
argv
[
1
]))
<=
0
||
(
grid_cols
=
atoi
(
argv
[
2
]))
<=
0
||
(
sim_time
=
atoi
(
argv
[
3
]))
<=
0
||
(
num_omp_threads
=
atoi
(
argv
[
4
]))
<=
0
)
usage
(
argc
,
argv
);
/* allocate memory for the temperature and power arrays */
temp
=
(
FLOAT
*
)
calloc
(
grid_rows
*
grid_cols
,
sizeof
(
FLOAT
));
power
=
(
FLOAT
*
)
calloc
(
grid_rows
*
grid_cols
,
sizeof
(
FLOAT
));
result
=
(
FLOAT
*
)
calloc
(
grid_rows
*
grid_cols
,
sizeof
(
FLOAT
));
if
(
!
temp
||
!
power
)
fatal
(
"unable to allocate memory"
);
/* read initial temperatures and input power */
tfile
=
argv
[
5
];
pfile
=
argv
[
6
];
ofile
=
argv
[
7
];
read_input
(
temp
,
grid_rows
,
grid_cols
,
tfile
);
read_input
(
power
,
grid_rows
,
grid_cols
,
pfile
);
printf
(
"Start computing the transient temperature
\n
"
);
long
long
start_time
=
get_time
();
compute_tran_temp
(
result
,
sim_time
,
temp
,
power
,
grid_rows
,
grid_cols
);
long
long
end_time
=
get_time
();
printf
(
"Ending simulation
\n
"
);
printf
(
"Total time: %.3f seconds
\n
"
,
((
float
)
(
end_time
-
start_time
))
/
(
1000
*
1000
));
writeoutput
((
1
&
sim_time
)
?
result
:
temp
,
grid_rows
,
grid_cols
,
ofile
);
/* output results */
#ifdef VERBOSE
fprintf
(
stdout
,
"Final Temperatures:
\n
"
);
#endif
#ifdef OUTPUT
for
(
i
=
0
;
i
<
grid_rows
*
grid_cols
;
i
++
)
fprintf
(
stdout
,
"%d
\t
%g
\n
"
,
i
,
temp
[
i
]);
#endif
/* cleanup */
free
(
temp
);
free
(
power
);
return
0
;
}
/* vim: set ts=4 sw=4 sts=4 et si ai: */
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment