Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Created on Thu Mar 4 08:53:28 2021
@author: Michael Schlüter \n
Technische Universität Berlin \n
https://www.pe.tu-berlin.de/ \n
m.schlueter@tu-berlin.de
"""
from unittest.loader import VALID_MODULE_NAME
import toml #used for conifg data (vehicles, semiconductor, ...)
import pickle #used to save output data to plot later...
import click
import numpy as np
import numpy.polynomial.polynomial as poly
import matplotlib.pyplot as plt
import matplotlib.font_manager
import os
from csv import reader
import sympy as sy
from scipy import signal
from pathlib import Path
import pyfiglet
import datetime
def f(question):
"""Answer to the Ultimate Question of Life, the Universe, and Everything.
tbd: Find the inverse function..."""
return 42
def read_toml(file):
"""This function loads the data of the vehicle."""
vehicle = toml.load(file)
Felge_d = vehicle['basic']['rim_dia']*0.0254
H = vehicle['basic']['H_B'] * vehicle['basic']['B'] * 0.01
vehicle['basic']['wheel_radius'] = (Felge_d + (2*H))/2
vehicle['basic']['i_g'] = vehicle['basic']['n_max'] / 60 *(vehicle['basic']['wheel_radius'] * 2 * np.pi) / (vehicle['basic']['v_max']/3.6)
return(vehicle)
def read_csv(file):
"""Read csv export from automeris.io
Column Separator: comma [,]
decimal separator: dot[.]"""
with open(file, 'r') as read_obj: # read csv file as a list of lists
csv_reader = reader(read_obj) # pass the file object to reader() to get the reader object
list_of_rows = list(csv_reader) # Pass reader object to list() to get a list of lists
Data = np.asarray(list_of_rows).astype(float)
return Data
def rolling_fiction(vehicle, v, alpha):
"""This function calculates the rolling friction acording to Mitschke, Wallentowitz 2014 - Dynamik der Kraftfahzeuge p. 14.:
.. math::
F_{R} = (M_{w} + M_{z}) \\cdot g \\cdot cos(\\alpha) \\cdot \\left( f_{R0} + f_{R1} \\cdot \\frac{v}{100 km/h} + f_{R4} \\cdot {\\left(\\frac{v}{100 km/h}\\right)}^4\\right)
"""
if v == 0:
return(0)
else:
return((vehicle['basic']['m_w'] + vehicle['basic']['m_z']) * vehicle['basic']['g_earth'] * np.cos(alpha /180 * np.pi) * (vehicle['basic']['f_B'] + vehicle['basic']['f_R0'] + (vehicle['basic']['f_R1'] * (v*3.6)/100) + (vehicle['basic']['f_R4'] * ((v*3.6)/100)**4)))
def aerodynamic_resistance(vehicle, v):
"""This function calculates the aerodynamic resistance acording to:
.. math::
F_{L} = c_{w} \\cdot A_{front} \\cdot \\frac{p_{air}}{2} \\cdot v^2
"""
return(0.5 * vehicle['basic']['cw'] * vehicle['basic']['A_front'] * vehicle['basic']['p_air'] * v**2)
def acceleration_resistance(a, vehicle):
"""This function calculates the acceleration resistance acording to:
.. math::
F_{A} = a \\cdot (M_{w} \\cdot \\lambda + M_{z})
"""
return(a * (vehicle['basic']['m_w'] * vehicle['basic']['lambda'] + vehicle['basic']['m_z']))
def slope_resistance(vehicle, alpha):
"""This function calculates the slope resistance acording to:
.. math::
F_{S} = sin (\\alpha) \\cdot (M_{w} + M_{z}) \\cdot g
"""
return(np.sin (alpha * np.pi/180) * (vehicle['basic']['m_w'] + vehicle['basic']['m_z']) * vehicle['basic']['g_earth'])
def total_force(vehicle, a, v, alpha):
"""This function calculates the total force for a vehicle in one operation point:
.. math::
F_{Total} = F_{S} + F_{A} + F_{L} + F_{R}
"""
return(slope_resistance(vehicle, alpha) + acceleration_resistance(a, vehicle) + aerodynamic_resistance(vehicle, v) + rolling_fiction(vehicle, v, alpha))
def dq0_to_abc(d, q, wt, z=0, delta=0):
"""Inverse Park transform"""
a = d*np.cos(wt+delta) - q*np.sin(wt+delta) + z
b = d*np.cos(wt-(2*np.pi/3)+delta) - q*np.sin(wt-(2*np.pi/3)+delta) + z
c = d*np.cos(wt+(2*np.pi/3)+delta) - q*np.sin(wt+(2*np.pi/3)+delta) + z
return a, b, c
def calc_PMSM(vehicle, T, n, verbose = False):
"""Calculation of the inverter set point for a given vehicle, tourque and speed of a permanent magnet synchronos motor (PMSM).
ToDo: speed up -> add complete numerical calculation
"""
erg = {}
if T == 0:
erg["status"] = 'Status: Basic Speed Range'
erg["i_d"] = 0
erg["i_q"] = 0
erg["v_d"] = 0
erg["v_q"] = 0
return (erg)
if n > vehicle['basic']['n_max']/60:
erg["status"] = 'Error: Rotational limit reached!'
return(erg)
i_d = sy.symbols('i_d')
i_dlist = (sy.solveset(sy.Eq(sy.diff(( i_d**2 + ( (2*T) / ( 3* vehicle['electric']['zp'] * (vehicle['electric']['PSI'] + (vehicle['electric']['Ld']-vehicle['electric']['Lq'])*i_d) ) )**2) ,i_d),0), i_d, sy.Interval(-vehicle['electric']['I_max'],0)))
if len(list(i_dlist)) == 0:
erg["status"] = 'Error: Current limit reached!'
return(erg)
i_ds = list(i_dlist)[0]
erg["i_d"] = i_ds
i_q = (2*T) / ( 3*vehicle['electric']['zp']* (vehicle['electric']['PSI'] + (vehicle['electric']['Ld']-vehicle['electric']['Lq'])* i_ds ))
erg["i_q"] = i_q
if verbose:
erg["fuc_T"] = sy.lambdify(i_d, (2*T) / ( 3*vehicle['electric']['zp']* (vehicle['electric']['PSI'] + (vehicle['electric']['Ld']-vehicle['electric']['Lq'])*i_d )) )
erg["MTPC"] = (i_ds, i_q)
if i_ds**2 + i_q**2 > vehicle['electric']['I_max']**2:
erg["status"] = 'Error: Current limit reached!'
return(erg)
omega = 2*sy.pi* n*vehicle['electric']['zp']
v_max = vehicle['electric']['V_DC'] / np.sqrt(3) * vehicle['electric']['V_DC_res']
v_d = (i_ds * vehicle['electric']['Rs'] - omega*vehicle['electric']['Lq'] * i_q).evalf()
erg["v_d"] = v_d
v_q = (i_q * vehicle['electric']['Rs'] + (vehicle['electric']['Ld'] * i_ds + vehicle['electric']['PSI'])* omega).evalf()
erg["v_q"] = v_q
if verbose:
if T > 0:
erg['fuc_Imax'] = sy.lambdify(i_d, sy.sqrt(vehicle['electric']['I_max']**2 - i_d**2))
elif T < 0:
erg['fuc_Imax'] = sy.lambdify(i_d, -sy.sqrt(vehicle['electric']['I_max']**2 - i_d**2))
if sy.sqrt( v_d**2 + v_q**2) > v_max:
if T > 0:
func = sy.lambdify(i_d, (2*T) / ( 3*vehicle['electric']['zp']* (vehicle['electric']['PSI'] + (vehicle['electric']['Ld']-vehicle['electric']['Lq'])*i_d ) ) - sy.sqrt( (v_max**2 - (omega * vehicle['electric']['PSI'] + omega * vehicle['electric']['Ld']*i_d)**2) / ( omega**2 * vehicle['electric']['Lq']**2) ))
with np.errstate(invalid='ignore'):
xx = np.linspace (-vehicle['electric']['I_max'],0,10000)
if np.nanmin(func(xx)) > 0:
# erg["fuc_V"] = func
erg["fuc_V"] = sy.lambdify(i_d, sy.sqrt( (v_max**2 - (omega * vehicle['electric']['PSI'] + omega * vehicle['electric']['Ld']*i_d)**2) / ( omega**2 * vehicle['electric']['Lq']**2) ) )
erg["status"] = 'Error: Voltage limit reached!'
return(erg)
with np.errstate(invalid='ignore'):
A = np.diff(np.sign(func(xx)))
A[np.isnan(A)] = 0
test = xx[np.where(A)[0]]
i_ds = test[0]
erg["i_d"] = i_ds
i_q = ( (2*T) / ( 3*vehicle['electric']['zp']* (vehicle['electric']['PSI'] + (vehicle['electric']['Ld']-vehicle['electric']['Lq'])*list(test)[0] )) ) #.evalf() )
erg["i_q"] = i_q
erg["status"] = 'Status: Field-Weakening!'
v_d = (i_ds * vehicle['electric']['Rs'] - omega*vehicle['electric']['Lq'] * i_q).evalf()
erg["v_d"] = v_d
v_q = (i_q * vehicle['electric']['Rs'] + (vehicle['electric']['Ld'] * i_ds + vehicle['electric']['PSI'])* omega).evalf()
erg["v_q"] = v_q
if verbose:
erg["fuc_V"] = sy.lambdify(i_d, sy.sqrt( (v_max**2 - (omega * vehicle['electric']['PSI'] + omega * vehicle['electric']['Ld']*i_d)**2) / ( omega**2 * vehicle['electric']['Lq']**2) ) )
if i_ds**2 + i_q**2 > vehicle['electric']['I_max']**2:
erg["status"] = 'Error: Current limit under voltage limit reached!'
return(erg)
return(erg)
elif T < 0:
func = sy.lambdify(i_d, (2*T) / ( 3*vehicle['electric']['zp']* (vehicle['electric']['PSI'] + (vehicle['electric']['Ld']-vehicle['electric']['Lq'])*i_d ) ) + sy.sqrt( (v_max**2 - (omega * vehicle['electric']['PSI'] + omega * vehicle['electric']['Ld']*i_d)**2) / ( omega**2 * vehicle['electric']['Lq']**2) ))
with np.errstate(invalid='ignore'):
xx = np.linspace (-vehicle['electric']['I_max'],0,10000)
if np.nanmax(func(xx)) < 0:
# erg["fuc_V"] = func
erg["fuc_V"] = sy.lambdify(i_d, sy.sqrt( (v_max**2 - (omega * vehicle['electric']['PSI'] + omega * vehicle['electric']['Ld']*i_d)**2) / ( omega**2 * vehicle['electric']['Lq']**2) ) )
erg["status"] = 'Error: Voltage limit reached!'
return(erg)
with np.errstate(invalid='ignore'):
A = np.diff(np.sign(func(xx)))
A[np.isnan(A)] = 0
test = xx[np.where(A)[0]]
i_ds = test[0]
erg["i_d"] = i_ds
i_q = ( (2*T) / ( 3*vehicle['electric']['zp']* (vehicle['electric']['PSI'] + (vehicle['electric']['Ld']-vehicle['electric']['Lq'])*list(test)[0] )) )
erg["i_q"] = i_q
erg["status"] = 'Status: Field-Weakening!'
v_d = (i_ds * vehicle['electric']['Rs'] - omega*vehicle['electric']['Lq'] * i_q).evalf()
erg["v_d"] = v_d
v_q = (i_q * vehicle['electric']['Rs'] + (vehicle['electric']['Ld'] * i_ds + vehicle['electric']['PSI'])* omega).evalf()
erg["v_q"] = v_q
if verbose:
erg["fuc_V"] = sy.lambdify(i_d, -sy.sqrt( (v_max**2 - (omega * vehicle['electric']['PSI'] + omega * vehicle['electric']['Ld']*i_d)**2) / ( omega**2 * vehicle['electric']['Lq']**2) ) )
if i_ds**2 + i_q**2 > vehicle['electric']['I_max']**2:
erg["status"] = 'Error: Current limit under voltage limit reached!'
return(erg)
return(erg)
erg["status"] = 'Status: Basic Speed Range'
return(erg)
def plot_PMSM(vehicle, T,n):
"""Plot the PMSM set point in the dq-current plane."""
erg = calc_PMSM(vehicle, T, n, True)
xx = np.linspace (-700,-1,1000)
fig, ax = plt.subplots(figsize=(6,5))
with np.errstate(invalid='ignore'):
ax.plot(xx,erg["fuc_T"](xx),'g', alpha = 1, label='Tourque Curve')
ax.plot(erg['MTPC'][0], erg['MTPC'][1],'ro', label='MTPC')
if erg['status'] == 'Status: Field-Weakening!' or erg['status'] == 'Error: Voltage limit reached!' or erg['status'] == 'Error: Current limit under voltage limit reached!':
ax.plot(erg['i_d'], erg['i_q'],'bo', label = 'MTPV')
ax.plot(xx, erg['fuc_V'](xx), 'b', label = 'Voltage Boundary')
ax.plot(xx, erg['fuc_Imax'](xx) ,'r', label='I_max Boundary' )
ax.set_xlim(-700, 0)
#ax.set_ylim(0,700)
ax.grid(True, axis='both', ls="-", color='0.8')
ax.set_ylabel('i_q')
ax.set_xlabel('i_d')
ax.legend()
title_text = vehicle['name'] + ' @ ' + str(int(T)) + ' Nm ' + str(int(n*60)) + ' rmp ' + '\n' + erg['status']
ax.set_title( title_text )
# plt.show()
def calc_SVPWM(vd, vq, n, vehicle):
"""Calculation of the Space Vetor Pulse Width Modulation (SVPWM) for the inverter."""
f = n * vehicle['electric']['zp']
t_dead = vehicle['electric']['t_dead']
Vdc = vehicle['electric']['V_DC']
fs = vehicle['electric']['fs']
betrag = np.sqrt(vd**2 + vq**2)
M = betrag / Vdc * 2
if betrag > Vdc/np.sqrt(3):
Status = 'Warning: reached maximum Voltage -> overmodulation or worse'
else:
Status = 'Status: Normal'
if t_dead == 0:
t = np.arange(0,1/f, 1/fs/100)
else:
t = np.arange(0,1/f, t_dead)
w = 2 * np.pi * f
wt = w*t
va,vb,vc = dq0_to_abc(vd,vq,wt)
vaz = va - ((np.maximum.reduce([va,vb,vc]) + np.minimum.reduce([va,vb,vc]))/2) #Holmes (6.33)
vbz = vb - ((np.maximum.reduce([va,vb,vc]) + np.minimum.reduce([va,vb,vc]))/2) #Holmes (6.33)
vcz = vc - ((np.maximum.reduce([va,vb,vc]) + np.minimum.reduce([va,vb,vc]))/2) #Holmes (6.33)
triangle = Vdc/2 * signal.sawtooth(2 * np.pi * fs * t, 0.5)
B0wf = np.greater(vaz, triangle).astype(int)
B0wf[np.where(B0wf == 0)] = -1
if t_dead != 0:
B0wf[1:-1:2][np.equal(B0wf[:-2:2], -B0wf[2::2])] = 0
B1wf = np.greater(vbz, triangle).astype(int)
B1wf[np.where(B1wf == 0)] = -1
if t_dead != 0:
B1wf[1:-1:2][np.equal(B1wf[:-2:2], -B1wf[2::2])] = 0
B2wf = np.greater(vcz, triangle).astype(int)
B2wf[np.where(B2wf == 0)] = -1
if t_dead != 0:
B2wf[1:-1:2][np.equal(B2wf[:-2:2], -B2wf[2::2])] = 0
return(t, M, B0wf, B1wf, B2wf, Status)
def MOSFET_losses(vehicle, f, time, B0wf, B1wf, B2wf, i_d, i_q):
"""Calculate the MOSFET losses:
Conduction losses including parallel conduction of MOSFET channel and body diode in reverese conduction;
dead/blanking time conduction losses of diodes;
switching losses bases on Eon and Eoff including Gate ON and OFF resistors;
Reverse recovery losses of body diode"""
Temp = vehicle['electric']['Tj']
Rg_on = vehicle['electric']['Rg_on']
Rg_off = vehicle['electric']['Rg_off']
order = 2
Vdcref = vehicle['electric']['Vdcref']
data_folder = Path('datasheets/' + vehicle['electric']['foulder_MOSFET'])
t_dead = vehicle['electric']['t_dead']
fs = vehicle['electric']['fs']
Vdc = vehicle['electric']['V_DC']
w = 2 * np.pi * f
wt = w*time
ia,ib,ic = dq0_to_abc(i_d, i_q, wt)
file = data_folder /'Rds_on_400A_T.csv'
Rds_on_400A_T = read_csv(file)
file = data_folder / 'Rds_on_25C_Id.csv'
Rds_on_25C_Id = read_csv(file)
file = data_folder /'Isd_T25_Vsd.csv'
Isd_T25_Vsd = read_csv(file)
Isd_T25_Vsdp = poly.Polynomial(poly.polyfit(Isd_T25_Vsd[:,1],Isd_T25_Vsd[:,0],order))
# maybe an exponential fit like: https://swharden.com/blog/2020-09-24-python-exponential-fit/#exponential-fit-with-python would be better for extrapolation, interpolation should be fine
Rds_on_400A_T = poly.Polynomial(poly.polyfit(Rds_on_400A_T[:,0],Rds_on_400A_T[:,1],order))
Rds_on_25C_Idp = poly.Polynomial(poly.polyfit(Rds_on_25C_Id[:,0],Rds_on_25C_Id[:,1],order-1))
file = data_folder / 'Eoff_T125_Rg.csv'
Eoff_Rg = read_csv(file)
file = data_folder / 'Eon_T125_Rg.csv'
Eon_Rg = read_csv(file)
Eoff_Rg_p = poly.Polynomial(poly.polyfit(Eoff_Rg[:,0],Eoff_Rg[:,1],order))
Eon_Rg_p = poly.Polynomial(poly.polyfit(Eon_Rg[:,0],Eon_Rg[:,1],order))
# Erec
file = data_folder / 'Erec_T125.csv'
Erec_T125 = read_csv(file)
file = data_folder / 'Erec_Rg.csv'
Erec_Rg = read_csv(file)
Erec_Rg_p = poly.Polynomial(poly.polyfit(Erec_Rg[:,0],Erec_Rg[:,1],14))
Erec_T125_p = poly.Polynomial(poly.polyfit(Erec_T125[:,0],Erec_T125[:,1],order))
A = Rds_on_25C_Idp.coef[1]
B = Rds_on_25C_Idp.coef[0]
C = Isd_T25_Vsdp.coef[2]
D = Isd_T25_Vsdp.coef[1]
E = Isd_T25_Vsdp.coef[0]
def calculation(B0wf):
if t_dead != 0:
Wcon_MOSh = np.abs(ia[np.where( (B0wf == 1) & (ia > 0) )])**2 * Rds_on_25C_Idp(np.abs(ia[np.where( (B0wf == 1) & (ia > 0) )])) * Rds_on_400A_T(Temp)/Rds_on_400A_T(25) * t_dead
Wcon_MOSl = np.abs(ia[np.where( (B0wf == -1) & (ia < 0) )])**2 * Rds_on_25C_Idp(np.abs(ia[np.where( (B0wf == -1) & (ia < 0) )])) * Rds_on_400A_T(Temp)/Rds_on_400A_T(25)* t_dead
Wcon_MOSh = np.append(Wcon_MOSh, np.abs(ia[np.where( ( np.abs(ia) * Rds_on_25C_Idp(ia) * Rds_on_400A_T(Temp)/Rds_on_400A_T(25) <= Isd_T25_Vsdp(0) ) & (B0wf == 1) & (ia < 0) )])**2
* Rds_on_25C_Idp(np.abs(ia[np.where( ( np.abs(ia) * Rds_on_25C_Idp(ia) * Rds_on_400A_T(Temp)/Rds_on_400A_T(25) <= Isd_T25_Vsdp(0) ) & (B0wf == 1) & (ia < 0) )])) * Rds_on_400A_T(Temp)/Rds_on_400A_T(25) * t_dead, axis=0)
I_MOShp = np.abs(ia[np.where( ( np.abs(ia) * Rds_on_25C_Idp(ia) * Rds_on_400A_T(Temp)/Rds_on_400A_T(25) > Isd_T25_Vsdp(0) ) & (B0wf == 1) & (ia < 0) )])
I_MOSh = -((2*C*I_MOShp + D+ B) / (A-C))/2 + np.sqrt((((2*C*I_MOShp + D+ B) / (A-C))/2)**2 - (-(C * I_MOShp**2 + E + D*I_MOShp) / (A-C)))
I_MOS_dh = I_MOShp - I_MOSh
Wcon_MOSh = np.append(Wcon_MOSh, I_MOSh**2 * Rds_on_25C_Idp(I_MOSh) * Rds_on_400A_T(Temp)/Rds_on_400A_T(25) * t_dead)
Wcon_MOS_dh = I_MOS_dh * Isd_T25_Vsdp(I_MOS_dh)
Wcon_MOSl = np.append(Wcon_MOSl, np.abs(ia[np.where( ( np.abs(ia) * Rds_on_25C_Idp(ia) * Rds_on_400A_T(Temp)/Rds_on_400A_T(25) <= Isd_T25_Vsdp(0) ) & (B0wf == -1) & (ia > 0) )])**2 \
* Rds_on_25C_Idp(np.abs(ia[np.where( ( np.abs(ia) * Rds_on_25C_Idp(ia) * Rds_on_400A_T(Temp)/Rds_on_400A_T(25) <= Isd_T25_Vsdp(0) ) & (B0wf == -1) & (ia > 0) )])) * Rds_on_400A_T(Temp)/Rds_on_400A_T(25) * t_dead, axis=0)
I_MOSlp = np.abs(ia[np.where( ( np.abs(ia) * Rds_on_25C_Idp(ia) * Rds_on_400A_T(Temp)/Rds_on_400A_T(25) > Isd_T25_Vsdp(0) ) & (B0wf == -1) & (ia > 0) )])
I_MOSl = -((2*C*I_MOSlp + D+ B) / (A-C))/2 + np.sqrt((((2*C*I_MOSlp + D+ B) / (A-C))/2)**2 - (-(C * I_MOSlp**2 + E + D*I_MOSlp) / (A-C)))
I_MOS_dl = I_MOSlp - I_MOSl
Wcon_MOSl = np.append(Wcon_MOSl, I_MOSl**2 * Rds_on_25C_Idp(I_MOSl) * Rds_on_400A_T(Temp)/Rds_on_400A_T(25) * t_dead)
Wcon_MOS_dl = I_MOS_dl * Isd_T25_Vsdp(I_MOS_dl)
else:
Wcon_MOSh = np.abs(ia[np.where( (B0wf == 1) & (ia > 0) )])**2 * Rds_on_25C_Idp(np.abs(ia[np.where( (B0wf == 1) & (ia > 0) )])) * Rds_on_400A_T(Temp)/Rds_on_400A_T(25) * 1/fs/100
Wcon_MOSl = np.abs(ia[np.where( (B0wf == -1) & (ia < 0) )])**2 * Rds_on_25C_Idp(np.abs(ia[np.where( (B0wf == -1) & (ia < 0) )])) * Rds_on_400A_T(Temp)/Rds_on_400A_T(25)* 1/fs/100
Wcon_MOSh = np.append(Wcon_MOSh, np.abs(ia[np.where( ( np.abs(ia) * Rds_on_25C_Idp(ia) * Rds_on_400A_T(Temp)/Rds_on_400A_T(25) <= Isd_T25_Vsdp(0) ) & (B0wf == 1) & (ia < 0) )])**2
* Rds_on_25C_Idp(np.abs(ia[np.where( ( np.abs(ia) * Rds_on_25C_Idp(ia) * Rds_on_400A_T(Temp)/Rds_on_400A_T(25) <= Isd_T25_Vsdp(0) ) & (B0wf == 1) & (ia < 0) )])) * Rds_on_400A_T(Temp)/Rds_on_400A_T(25) * 1/fs/100, axis=0)
I_MOShp = np.abs(ia[np.where( ( np.abs(ia) * Rds_on_25C_Idp(ia) * Rds_on_400A_T(Temp)/Rds_on_400A_T(25) > Isd_T25_Vsdp(0) ) & (B0wf == 1) & (ia < 0) )])
I_MOSh = -((2*C*I_MOShp + D+ B) / (A-C))/2 + np.sqrt((((2*C*I_MOShp + D+ B) / (A-C))/2)**2 - (-(C * I_MOShp**2 + E + D*I_MOShp) / (A-C)))
I_MOS_dh = I_MOShp - I_MOSh
Wcon_MOSh = np.append(Wcon_MOSh, I_MOSh**2 * Rds_on_25C_Idp(I_MOSh) * Rds_on_400A_T(Temp)/Rds_on_400A_T(25) * 1/fs/100)
Wcon_MOS_dh = I_MOS_dh * Isd_T25_Vsdp(I_MOS_dh)
Wcon_MOSl = np.append(Wcon_MOSl, np.abs(ia[np.where( ( np.abs(ia) * Rds_on_25C_Idp(ia) * Rds_on_400A_T(Temp)/Rds_on_400A_T(25) <= Isd_T25_Vsdp(0) ) & (B0wf == -1) & (ia > 0) )])**2 \
* Rds_on_25C_Idp(np.abs(ia[np.where( ( np.abs(ia) * Rds_on_25C_Idp(ia) * Rds_on_400A_T(Temp)/Rds_on_400A_T(25) <= Isd_T25_Vsdp(0) ) & (B0wf == -1) & (ia > 0) )])) * Rds_on_400A_T(Temp)/Rds_on_400A_T(25) * 1/fs/100, axis=0)
I_MOSlp = np.abs(ia[np.where( ( np.abs(ia) * Rds_on_25C_Idp(ia) * Rds_on_400A_T(Temp)/Rds_on_400A_T(25) > Isd_T25_Vsdp(0) ) & (B0wf == -1) & (ia > 0) )])
I_MOSl = -((2*C*I_MOSlp + D+ B) / (A-C))/2 + np.sqrt((((2*C*I_MOSlp + D+ B) / (A-C))/2)**2 - (-(C * I_MOSlp**2 + E + D*I_MOSlp) / (A-C)))
I_MOS_dl = I_MOSlp - I_MOSl
Wcon_MOSl = np.append(Wcon_MOSl, I_MOSl**2 * Rds_on_25C_Idp(I_MOSl) * Rds_on_400A_T(Temp)/Rds_on_400A_T(25) * 1/fs/100)
Wcon_MOS_dl = I_MOS_dl * Isd_T25_Vsdp(I_MOS_dl)
if t_dead != 0:
Wcon_d = np.abs(ia[np.where(B0wf == 0)]) * Isd_T25_Vsdp(np.abs(ia[np.where(B0wf == 0)])) * t_dead
else:
Wcon_d = 0
P_cond = ( np.sum(Wcon_MOSh) + np.sum(Wcon_MOSl) + np.sum(Wcon_MOS_dl) + np.sum(Wcon_MOS_dh) + np.sum(Wcon_d))*f
file = data_folder / 'Eoff_ Tvj _ 125_C.csv'
Eoff = read_csv(file)
file = data_folder / 'Eon_ Tvj _ 125_C.csv'
Eon = read_csv(file)
if Eon[0,0] != 0:
Eon = np.insert(Eon, [0], [0], axis=0)
if Eoff[0,0] != 0:
Eoff = np.insert(Eoff, [0], [0], axis=0)
wEoff = np.ones(Eoff[:,1].shape)
wEoff[0] = 10 # force Eoffp(0) closer to zero
wEon = np.ones(Eon[:,1].shape)
wEon[0] = 10 # force Eonp(0) closer to zero
Eoffp = poly.Polynomial(poly.polyfit(Eoff[:,0],Eoff[:,1],order,w = np.sqrt(wEoff)))
Eonp = poly.Polynomial(poly.polyfit(Eon[:,0],Eon[:,1],order,w = np.sqrt(wEon)))
if t_dead != 0:
T1hon = Eonp(ia[np.where((B0wf[1::] ==0) & (B0wf[:-1:] == 1) & (ia[1::] > 0))]) * Eon_Rg_p(Rg_on) / Eon_Rg_p(5.1) * (Vdc/Vdcref)**1.4 # T1h off
T1hoff = Eoffp(ia[np.where((B0wf[1::] ==1) & (B0wf[:-1:] == 0)& (ia[1::] > 0))]) * Eoff_Rg_p(Rg_off) / Eoff_Rg_p(5.1) * (Vdc/Vdcref)**1.4 # T1h on
T2loff = Eoffp(np.abs(ia[np.where((B0wf[1::] ==0) & (B0wf[:-1:] == -1)& (ia[1::] < 0))])) * Eoff_Rg_p(Rg_off) / Eoff_Rg_p(5.1) * (Vdc/Vdcref)**1.4 # T2l off
T2lon = Eonp(np.abs(ia[np.where((B0wf[1::] ==-1) & (B0wf[:-1:] == 0) & (ia[1::] < 0))])) * Eon_Rg_p(Rg_on) / Eon_Rg_p(5.1) * (Vdc/Vdcref)**1.4 # T2l on
#Erec
D1hoff = Erec_T125_p(np.abs(ia[np.where((B0wf[1::] ==-1) & (B0wf[:-1:] == 0) & (ia[1::] < 0))])) * Erec_Rg_p(Rg_on)/Erec_Rg_p(5.1)
D2loff = Erec_T125_p(ia[np.where((B0wf[1::] ==0) & (B0wf[:-1:] == 1) & (ia[1::] > 0))]) * Erec_Rg_p(Rg_on)/Erec_Rg_p(5.1)
else:
T1hon = Eonp(ia[np.where((B0wf[1::] ==-1) & (B0wf[:-1:] == 1) & (ia[1::] > 0))]) * Eon_Rg_p(Rg_on) / Eon_Rg_p(5.1) * (Vdc/Vdcref)**1.4 # T1h off
T1hoff = Eoffp(ia[np.where((B0wf[1::] ==1) & (B0wf[:-1:] == -1)& (ia[1::] > 0))]) * Eoff_Rg_p(Rg_off) / Eoff_Rg_p(5.1) * (Vdc/Vdcref)**1.4 # T1h on
T2loff = Eoffp(np.abs(ia[np.where((B0wf[1::] ==1) & (B0wf[:-1:] == -1)& (ia[1::] < 0))])) * Eoff_Rg_p(Rg_off) / Eoff_Rg_p(5.1) * (Vdc/Vdcref)**1.4 # T2l off
T2lon = Eonp(np.abs(ia[np.where((B0wf[1::] ==-1) & (B0wf[:-1:] == 1) & (ia[1::] < 0))])) * Eon_Rg_p(Rg_on) / Eon_Rg_p(5.1) * (Vdc/Vdcref)**1.4 # T2l on
#Erec
D1hoff = Erec_T125_p(np.abs(ia[np.where((B0wf[1::] ==-1) & (B0wf[:-1:] == 1) & (ia[1::] < 0))])) * Erec_Rg_p(Rg_on)/Erec_Rg_p(5.1)
D2loff = Erec_T125_p(ia[np.where((B0wf[1::] ==-1) & (B0wf[:-1:] == 1) & (ia[1::] > 0))]) * Erec_Rg_p(Rg_on)/Erec_Rg_p(5.1)
P_sw = ( np.sum(T1hon) + np.sum(T1hoff) + np.sum(T2loff) + np.sum(T2lon) + np.sum(D1hoff) + np.sum(D2loff) ) *f
P_tot = P_cond + P_sw
return(P_tot, P_cond, P_sw)
(P_tot, P_cond, P_sw) = [sum(x) for x in zip( calculation(B0wf), calculation(B1wf), calculation(B2wf))]
return(P_tot, P_cond, P_sw)
def IGBT_losses(vehicle, f, time, B0wf, B1wf, B2wf, i_d, i_q):
"""Calculation of IGBT losses: Conduction losses of IGBT and diode;
Switching losses based on Eon and Eoff depenting on Ron and Roff;
reverse recovery losses of diode"""
#Temp = vehicle['electric']['Tj'] # tbt include temperature dependency to IGBT losses
Rg_on = vehicle['electric']['Rg_on']
Rg_off = vehicle['electric']['Rg_off']
order = 2
Vdcref = vehicle['electric']['Vdcref']
data_folder = Path('datasheets/' + vehicle['electric']['foulder_IGBT'])
t_dead = vehicle['electric']['t_dead']
fs = vehicle['electric']['fs']
Vdc = vehicle['electric']['V_DC']
w = 2 * np.pi * f
wt = w*time
ia,ib,ic = dq0_to_abc(i_d, i_q, wt)
file = data_folder / 'Vce_Ic_T25.csv'
# Vce_Ic_T150.csv
# Vce_Ic_T125.csv
Vce_Ic = read_csv(file)
Vce_Ic_p = poly.Polynomial(poly.polyfit(Vce_Ic[:,1],Vce_Ic[:,0],order))
file = data_folder / 'If_Vf_T25.csv'
If_Vf = read_csv(file)
Vf_If_p = poly.Polynomial(poly.polyfit(If_Vf[:,1],If_Vf[:,0],order))
file = data_folder / 'Eon_Tvj125.csv'
Eon_Tvj125 = read_csv(file)
if Eon_Tvj125[0,0] != 0:
Eon_Tvj125 = np.insert(Eon_Tvj125, [0], [0], axis=0)
wEon = np.ones(Eon_Tvj125[:,1].shape)
wEon[0] = 10 # force Eonp(0) closer to zero
Eon_Tvj125_p = poly.Polynomial(poly.polyfit(Eon_Tvj125[:,0],Eon_Tvj125[:,1],order, w = np.sqrt(wEon)))
file = data_folder / 'Eon_Rg_Tvj125.csv'
Eon_Rg_Tvj125 = read_csv(file)
Eon_Rg_Tvj125_p = poly.Polynomial(poly.polyfit(Eon_Rg_Tvj125[:,0],Eon_Rg_Tvj125[:,1],order))
file = data_folder / 'Eoff_Tvj125.csv'
Eoff_Tvj125 = read_csv(file)
if Eoff_Tvj125[0,0] != 0:
Eoff_Tvj125 = np.insert(Eoff_Tvj125, [0], [0], axis=0)
wEon = np.ones(Eoff_Tvj125[:,1].shape)
wEon[0] = 10 # force Eonp(0) closer to zero
Eoff_Tvj125_p = poly.Polynomial(poly.polyfit(Eoff_Tvj125[:,0],Eoff_Tvj125[:,1],order, w = np.sqrt(wEon)))
file = data_folder / 'Eoff_Rg_Tvj125.csv'
Eoff_Rg_Tvj125 = read_csv(file)
Eoff_Rg_Tvj125_p = poly.Polynomial(poly.polyfit(Eoff_Rg_Tvj125[:,0],Eoff_Rg_Tvj125[:,1],order))
# Erec
file = data_folder / 'Erec_Tvj125.csv'
Erec_Tvj125 = read_csv(file)
if Erec_Tvj125[0,0] != 0:
Erec_Tvj125 = np.insert(Erec_Tvj125, [0], [0], axis=0)
wEon = np.ones(Erec_Tvj125[:,1].shape)
wEon[0] = 10 # force Eonp(0) closer to zero
Erec_Tvj125_p = poly.Polynomial(poly.polyfit(Erec_Tvj125[:,0],Erec_Tvj125[:,1],order, w = np.sqrt(wEon)))
file = data_folder / 'Erec_Rg_Tvj125.csv'
Erec_Rg_Tvj125 = read_csv(file)
Erec_Rg_Tvj125_p = poly.Polynomial(poly.polyfit(Erec_Rg_Tvj125[:,0],Erec_Rg_Tvj125[:,1],order))
def calculation(B0wf):
if t_dead != 0:
Wcon_igbth = np.abs(ia[np.where( (B0wf == 1) & (ia > 0) )]) * Vce_Ic_p(np.abs(ia[np.where( (B0wf == 1) & (ia > 0) )])) * t_dead
Wcon_dl = np.abs(ia[np.where( (B0wf == -1) & (ia > 0) )]) * Vf_If_p(np.abs(ia[np.where((B0wf == -1) & (ia > 0) )])) * t_dead
Wcon_igbtl = np.abs(ia[np.where( (B0wf == -1) & (ia < 0) )]) * Vce_Ic_p(np.abs(ia[np.where( (B0wf == -1) & (ia < 0) )])) * t_dead
Wcon_dh = np.abs(ia[np.where( (B0wf == 1) & (ia < 0) )]) * Vf_If_p(np.abs(ia[np.where((B0wf == 1) & (ia < 0) )])) * t_dead
else:
Wcon_igbth = np.abs(ia[np.where( (B0wf == 1) & (ia > 0) )]) * Vce_Ic_p(np.abs(ia[np.where( (B0wf == 1) & (ia > 0) )])) * 1/fs/100
Wcon_dl = np.abs(ia[np.where( (B0wf == -1) & (ia > 0) )]) * Vf_If_p(np.abs(ia[np.where((B0wf == -1) & (ia > 0) )])) * 1/fs/100
Wcon_igbtl = np.abs(ia[np.where( (B0wf == -1) & (ia < 0) )]) * Vce_Ic_p(np.abs(ia[np.where( (B0wf == -1) & (ia < 0) )])) * 1/fs/100
Wcon_dh = np.abs(ia[np.where( (B0wf == 1) & (ia < 0) )]) * Vf_If_p(np.abs(ia[np.where((B0wf == 1) & (ia < 0) )])) * 1/fs/100
# conduction losses of diodes during dead time
if t_dead != 0:
Wconb2_igbt_d = np.abs(ia[np.where(B0wf == 0)]) * Vf_If_p(np.abs(ia[np.where(B0wf == 0)])) * t_dead
else:
Wconb2_igbt_d = 0
Pcon_igbt = ( np.sum(Wcon_igbth) + np.sum(Wcon_igbtl) )*f
Pcon_igbt_d = ( np.sum(Wcon_dl) + np.sum(Wcon_dh) )*f
Pcon_igbt_dd = np.sum(Wconb2_igbt_d)*f
Pcon_igbt_ges = Pcon_igbt + Pcon_igbt_d + Pcon_igbt_dd
if t_dead !=0:
T1hon = Eon_Tvj125_p(ia[np.where((B0wf[1::] ==0) & (B0wf[:-1:] == 1) & (ia[1::] > 0))]) * Eon_Rg_Tvj125_p(Rg_on) / Eon_Rg_Tvj125_p(2.2) * (Vdc/Vdcref)**1.4 # T1h off
T1hoff = Eoff_Tvj125_p(ia[np.where((B0wf[1::] ==1) & (B0wf[:-1:] == 0)& (ia[1::] > 0))]) * Eoff_Rg_Tvj125_p(Rg_off) / Eoff_Rg_Tvj125_p(2.2) * (Vdc/Vdcref)**1.4 # T1h on
T2loff = Eoff_Tvj125_p(np.abs(ia[np.where((B0wf[1::] ==0) & (B0wf[:-1:] == -1)& (ia[1::] < 0))])) * Eoff_Rg_Tvj125_p(Rg_off) / Eoff_Rg_Tvj125_p(2.2) * (Vdc/Vdcref)**1.4 # T2l off
T2lon = Eon_Tvj125_p(np.abs(ia[np.where((B0wf[1::] ==-1) & (B0wf[:-1:] == 0) & (ia[1::] < 0))])) * Eon_Rg_Tvj125_p(Rg_on) / Eon_Rg_Tvj125_p(5.1) * (Vdc/Vdcref)**1.4 # T2l on
D1hoff = Erec_Tvj125_p(np.abs(ia[np.where((B0wf[1::] ==-1) & (B0wf[:-1:] == 0) & (ia[1::] < 0))])) * Erec_Rg_Tvj125_p(Rg_on)/Erec_Rg_Tvj125_p(2.2)
D2loff = Erec_Tvj125_p(ia[np.where((B0wf[1::] ==0) & (B0wf[:-1:] == 1) & (ia[1::] > 0))]) * Erec_Rg_Tvj125_p(Rg_on)/Erec_Rg_Tvj125_p(2.2)
else:
T1hon = Eon_Tvj125_p(ia[np.where((B0wf[1::] ==-1) & (B0wf[:-1:] == 1) & (ia[1::] > 0))]) * Eon_Rg_Tvj125_p(Rg_on) / Eon_Rg_Tvj125_p(2.2) * (Vdc/Vdcref)**1.4 # T1h off
T1hoff = Eoff_Tvj125_p(ia[np.where((B0wf[1::] ==1) & (B0wf[:-1:] == -1)& (ia[1::] > 0))]) * Eoff_Rg_Tvj125_p(Rg_off) / Eoff_Rg_Tvj125_p(2.2) * (Vdc/Vdcref)**1.4 # T1h on
T2loff = Eoff_Tvj125_p(np.abs(ia[np.where((B0wf[1::] ==1) & (B0wf[:-1:] == -1)& (ia[1::] < 0))])) * Eoff_Rg_Tvj125_p(Rg_off) / Eoff_Rg_Tvj125_p(2.2) * (Vdc/Vdcref)**1.4 # T2l off
T2lon = Eon_Tvj125_p(np.abs(ia[np.where((B0wf[1::] ==-1) & (B0wf[:-1:] == 1) & (ia[1::] < 0))])) * Eon_Rg_Tvj125_p(Rg_on) / Eon_Rg_Tvj125_p(5.1) * (Vdc/Vdcref)**1.4 # T2l on
D1hoff = Erec_Tvj125_p(np.abs(ia[np.where((B0wf[1::] ==-1) & (B0wf[:-1:] == 1) & (ia[1::] < 0))])) * Erec_Rg_Tvj125_p(Rg_on)/Erec_Rg_Tvj125_p(2.2)
D2loff = Erec_Tvj125_p(ia[np.where((B0wf[1::] ==-1) & (B0wf[:-1:] == 1) & (ia[1::] > 0))]) * Erec_Rg_Tvj125_p(Rg_on)/Erec_Rg_Tvj125_p(2.2)
Psw = ( np.sum(T1hon) + np.sum(T1hoff) + np.sum(T2loff) + np.sum(T2lon) + np.sum(D1hoff) + np.sum(D2loff) ) *f
P_tot = Pcon_igbt_ges + Psw
return(P_tot, Pcon_igbt_ges, Psw)
(P_tot, P_cond, P_sw) = [sum(x) for x in zip( calculation(B0wf), calculation(B1wf), calculation(B2wf))]
return(P_tot, P_cond, P_sw)
def read_drive_cycle(file, vehicle):
"""This fuction reads the drive cycle of the cycle folder and calculates acceloration, total force, power, rouns per second, torque...:
.. math::
\\omega_{1/s} = \\frac{v_{\\mathrm{m/s}}}{wheel_{radius} \\cdot 2 \\pi} \\cdot i_{g}
T = \\frac{Force \\cdot wheel_{radius}}{i_{g}} \cdot \\eta_{i_{g}} \\; \\mathrm{for \\; M => 0}
T = \\frac{Force \\cdot wheel_{radius}}{i_{g}} \cdot \\frac{1}{\\eta_{i_{g}}} \\; \\mathrm{for \\; M < 0}
"""
with open(file, 'r') as read_obj: # read csv file as a list of lists
csv_reader = reader(read_obj) # pass the file object to reader() to get the reader object
list_of_rows = list(csv_reader) # Pass reader object to list() to get a list of lists
cycle = np.delete(np.asarray(list_of_rows), (0), axis = 0).astype(float)
a = np.zeros((cycle[:,0].shape[0],24))
SVPWM = {}
items = list(range(0,cycle[:,0].shape[0]-1))
#for j in progressBar(items, prefix = 'Drive Cycle calculation:', suffix = 'Complete', length = 50):
with click.progressbar(items, label='calculate drive cycle') as bar:
for j in bar:
if j == 0:
a[j,0] = (cycle[j+1,1] - cycle[j,1])/3.6/(cycle[j+1,0] - cycle[j,0]) # acceleration [m/s**2]
else:
a[j,0] = (cycle[j+1,1] - cycle[j-1,1])/3.6/(cycle[j+1,0] - cycle[j-1,0]) # acceleration [m/s**2]
a[j,1] = cycle[j,1]/3.6 # speed [m/s]
a[j,2] = total_force(vehicle, a[j,0], a[j,1], cycle[j,2]) # Force [Nm]
a[j,3] = a[j,1] * a[j,2] # Power [W]
a[j,4] = a[j,1] /( vehicle['basic']['wheel_radius'] * 2 * np.pi) * vehicle['basic']['i_g'] # rotational speed / rounds per second [1/s]
if a[j,0] >= 0:
a[j,5] = a[j,2] * vehicle['basic']['wheel_radius'] / vehicle['basic']['i_g'] * vehicle['basic']['my_i_g'] # torque [Nm]
else:
a[j,5] = a[j,2] * vehicle['basic']['wheel_radius'] / vehicle['basic']['i_g'] / vehicle['basic']['my_i_g'] # torque [Nm]
a[j,6] = 2* np.pi * a[j,4] * a[j,5] # Power M1 [W]
PMSM = calc_PMSM(vehicle,a[j,5], a[j,4])
# print(j)
# print('M [Nm]: ', str(a[j,5]))
# print('n [1/s]: ', str(a[j,4]))
if PMSM['status'][0:6] != 'Status':
a[j,7] = np.nan
a[j,8] = np.nan
a[j,9] = np.nan
a[j,10] = np.nan
else:
a[j,7] = PMSM['i_d'] # i_d current setpoint of PMSM
a[j,8] = PMSM['i_q'] # i_q current setpoint of PMSM
a[j,9] = PMSM['v_d'] # v_d current setpoint of PMSM
a[j,10] = PMSM['v_q'] # v_q current setpoint of PMSM
#a[j,11] = PMSM['status'] # status of PMSM -> I sould store this somewhere...
if a[j,4] == 0 or a[j,5] == 0:
(time, M, B0wf, B1wf, B2wf,Status) = (0,0,0,0,0,'Status: M or n equals null')
else:
(time, M, B0wf, B1wf, B2wf, Status) = calc_SVPWM(float(PMSM['v_d']), float(PMSM['v_q']), a[j,4], vehicle)
# SVPWM[j] = {}
# SVPWM[j]['time'] = time
# SVPWM[j]['M'] = M
# SVPWM[j]['SV0'] = B0wf
# SVPWM[j]['SV1'] = B1wf
# SVPWM[j]['SV2'] = B2wf
# SVPWM[j]['StatusSVPWM'] = Status
# SVPWM[j]['StatusPSM'] = PMSM['status']
if (a[j,4] == 0 or a[j,5] == 0):
MOSFET = (0,0,0)
IGBT = (0,0,0)
else:
MOSFET = MOSFET_losses(vehicle, a[j,4] * vehicle['electric']['zp'], time, B0wf, B1wf, B2wf, a[j,7], a[j,8])
IGBT = IGBT_losses(vehicle, a[j,4] * vehicle['electric']['zp'], time, B0wf, B1wf, B2wf, a[j,7], a[j,8])
a[j,11] = (np.abs(a[j,7] + a[j,8]*1j) / np.sqrt(2)) **2 * vehicle['electric']['Rs'] # PMSM Loss Stator [W]
a[j,12] = MOSFET[0] # MOSFET total losses
a[j,13] = MOSFET[1] # MOSFET conduction losses
a[j,14] = MOSFET[2] # MOSFET switching losses
if np.abs( np.real( a[j,9] + a[j,10]*1j) * np.conjugate(a[j,7] + a[j,8]*1j)) == 0:
a[j,15] = np.nan
elif ((np.abs( np.real( a[j,9] + a[j,10]*1j) * np.conjugate(a[j,7] + a[j,8]*1j)) -a[j,12] ) / np.abs( np.real( a[j,9] + a[j,10]*1j) * np.conjugate(a[j,7] + a[j,8]*1j)) >= 1 or (np.abs( np.real( a[j,9] + a[j,10]*1j) * np.conjugate(a[j,7] + a[j,8]*1j)) -a[j,12] ) / np.abs( np.real( a[j,9] + a[j,10]*1j) * np.conjugate(a[j,7] + a[j,8]*1j)) < 0 ):
a[j,15] = np.nan
else:
a[j,15] = (np.abs( np.real( a[j,9] + a[j,10]*1j) * np.conjugate(a[j,7] + a[j,8]*1j)) -a[j,12] ) / np.abs( np.real( a[j,9] + a[j,10]*1j) * np.conjugate(a[j,7] + a[j,8]*1j)) # Energy conversion efficiency
a[j,17] = IGBT[0] # IGBT total losses
a[j,18] = IGBT[1] # IGBT conduction losses
a[j,19] = IGBT[2] # IGBT switching losses
if np.abs( np.real( a[j,9] + a[j,10]*1j) * np.conjugate(a[j,7] + a[j,8]*1j)) == 0:
a[j,20] = np.nan
elif ((np.abs( np.real( a[j,9] + a[j,10]*1j) * np.conjugate(a[j,7] + a[j,8]*1j)) -a[j,17] ) / np.abs( np.real( a[j,9] + a[j,10]*1j) * np.conjugate(a[j,7] + a[j,8]*1j)) >= 1 or (np.abs( np.real( a[j,9] + a[j,10]*1j) * np.conjugate(a[j,7] + a[j,8]*1j)) -a[j,17] ) / np.abs( np.real( a[j,9] + a[j,10]*1j) * np.conjugate(a[j,7] + a[j,8]*1j)) < 0 ):
a[j,20] = np.nan
else:
a[j,20] = (np.abs( np.real( a[j,9] + a[j,10]*1j) * np.conjugate(a[j,7] + a[j,8]*1j)) -a[j,17] ) / np.abs( np.real( a[j,9] + a[j,10]*1j) * np.conjugate(a[j,7] + a[j,8]*1j)) # Energy conversion efficiency
a[:,16] = np.nancumsum(a[:,12])/3600000 #E_total_MOSFET [kWh]
a[:,21] = np.nancumsum(a[:,17])/3600000 # E_total_IGBT [kWh]
a[:,22] = np.nancumsum(np.abs(a[:,3]))/3600000 #abs(E_total) [kWh]
a[:,23] = np.nancumsum(a[:,11])/3600000 #E_total_loss PMSM Stator [kWh]
cycle = np.concatenate((cycle, a), axis=1 )
variable_names = ['time','speed [km/h]','slope [°]','acceleration [m/s**2]','speed [m/s]','Force [Nm]','Total Power [W]', 'rounds per second [1/s]',
'torque [Nm]','Power M1 [W]','i_d [A]','i_q [A]','v_d [V]','v_q [V]', 'PMSM_Loss Stator [W]', 'P_total_MOSFET [W]','P_cond_MOSFET [W]','P_sw_MOSFET [W]', 'ETA_MOSFET', 'E_total_MOSFET [kWh]',
'P_total_IGBT [W]', 'P_cond_IGBT [W]', 'P_sw_IGBT [W]', 'ETA_IGBT', 'E_total_IGBT [kWh]', 'abs(E_total) [kWh]','E_total_loss PMSM Stator [kWh]']
return(cycle, variable_names)
def calc_con(vehicle, qns, qTs):
"""Calculation of conture plots in the torque-speed plane."""
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
ns = np.linspace(1,float(vehicle['basic']['n_max'])/60,qns)
T_max = 3/2 * vehicle['electric']['zp'] * ( (vehicle['electric']['PSI'] * (vehicle['electric']['I_max']/np.sqrt(2)) ) + (vehicle['electric']['Ld']-vehicle['electric']['Lq'])*-(vehicle['electric']['I_max']/np.sqrt(2))**2 )
T_max = np.ceil( T_max/100)*100
Ts = np.linspace(-T_max, T_max,qTs)
con_OP = np.empty((len(ns),len(Ts),),dtype=object)
con_OP.fill(np.nan)
con_i_d = np.empty((len(ns),len(Ts),))
con_i_d.fill(np.nan)
con_i_q = np.empty((len(ns),len(Ts),))
con_i_q.fill(np.nan)
con_v_d = np.empty((len(ns),len(Ts),))
con_v_d.fill(np.nan)
con_v_q = np.empty((len(ns),len(Ts),))
con_v_q.fill(np.nan)
con_P = np.empty((len(ns),len(Ts),))
con_P.fill(np.nan)
con_MOSFET_T = np.empty((len(ns),len(Ts),))
con_MOSFET_T.fill(np.nan)
con_MOSFET_C = np.empty((len(ns),len(Ts),))
con_MOSFET_C.fill(np.nan)
con_MOSFET_S = np.empty((len(ns),len(Ts),))
con_MOSFET_S.fill(np.nan)
con_IGBT_T = np.empty((len(ns),len(Ts),))
con_IGBT_T.fill(np.nan)
con_IGBT_C = np.empty((len(ns),len(Ts),))
con_IGBT_C.fill(np.nan)
con_IGBT_S = np.empty((len(ns),len(Ts),))
con_IGBT_S.fill(np.nan)
with click.progressbar(range(len(ns)),label='Tn plot calculating: ') as bar:
for n in bar:
# print(ns[n]*60)
for T in range(len(Ts)):
# print(ns[n]*60)
# print(Ts[T])
erg = calc_PMSM(vehicle, Ts[T], ns[n], False)
# print(erg['status'])
if not erg['status'][0:5] == 'Error':
con_OP[n,T] = (ns[n],Ts[T])
con_i_d[n,T] = float(erg['i_d'])
con_i_q[n,T] = float(erg['i_q'])
con_v_d[n,T] = float(erg['v_d'])
con_v_q[n,T] = float(erg['v_q'])
con_P[n,T] = 2*np.pi*Ts[T]*ns[n]
(time, M, B0wf, B1wf, B2wf, Status) = calc_SVPWM(float(erg['v_d']),float(erg['v_q']),ns[n],vehicle)
# print(Status)
if not Status[0:5] == 'Error':
(M_T,M_C,M_S) = MOSFET_losses(vehicle, ns[n] * vehicle['electric']['zp'], time, B0wf, B1wf, B2wf, float(erg['i_d']), float(erg['i_q']))
con_MOSFET_T[n,T] = M_T
con_MOSFET_C[n,T] = M_C
con_MOSFET_S[n,T] = M_S
(I_T,I_C,I_S) = IGBT_losses(vehicle, ns[n] * vehicle['electric']['zp'], time, B0wf, B1wf, B2wf, float(erg['i_d']), float(erg['i_q']))
con_IGBT_T[n,T] = I_T
con_IGBT_C[n,T] = I_C
con_IGBT_S[n,T] = I_S
# if Status == 'Warning: reached maximum Voltage -> overmodulation or worse':
# print(ns[n]*60)
# print(Ts[T])
# print(Status)
con_values = (ns, Ts, con_OP, con_i_d, con_i_q, con_v_d, con_v_q, con_P, con_MOSFET_T, con_MOSFET_C, con_MOSFET_S, con_IGBT_T, con_IGBT_C, con_IGBT_S)
con_names = ['ns', 'Ts', 'con_OP', 'con_i_d', 'con_i_q', 'con_v_d', 'con_v_q', 'con_P', 'con_MOSFET_T', 'con_MOSFET_C', 'con_MOSFET_S', 'con_IGBT_T', 'con_IGBT_C', 'con_IGBT_S']
return con_values, con_names
class Config(object):
def __init__(self):
self.vebose=False
pass_config= click.make_pass_decorator(Config, ensure=True)
@click.group()
@click.option('--verbose',is_flag=True)
@click.option('--home-directory', type=click.Path())
@pass_config
def cli(config, verbose, home_directory):
click.clear()
"""This is the main function."""
config.verbose = verbose
if home_directory is None:
home_directory = os.getcwd()
config.home_directory = home_directory
click.clear()
click.echo(click.style(r""" __-------__
/ _---------_ \
/ / \ \
| | | |
_ |_|___________|_| _
/-\| |/-\
| _ |\ 4 /| _ |
|(_)| \ 2 / |(_)|
|___|__\_____!_____/__|___|
[________|SiCWell|________]
|||| ~~~~~~~~ ||||
`--' `--'""", fg = 'green'))
@cli.command()
@click.option('-v', '--vehicle', type=click.File('r'), default = None,
help ='Here you can specify the vehicle of the vehicles foulder. If none is specified you will be asked to choose.')
@click.option('-c','--cycle', type=click.File('r'), default = None,
help = 'Here you can specify the drive cycle of the cycle foulder. If none is specified you will be asked to choose.')
@pass_config
def drive_cycle(config, vehicle, cycle):
"""Calculate a drive cycle."""
if config.verbose:
click.echo('We are in verbose mode.')
click.echo('The Working directory is %s' % config.home_directory)
if vehicle == None:
vehicles = list(os.listdir('vehicles'))
n = 0
click.echo('Here is the list of available vehicles.')
for vehicle in vehicles:
click.echo(str(n) + ': ' + str(vehicle))
n = n+1
nr = int(click.prompt('Please select vehicle [nr]', type=click.Choice([str(i) for i in range(n)])))
vehicle = read_toml(os.path.join('vehicles', vehicles[nr]))
#click.echo('You choose: ' + str(vehicle['name']))
if cycle == None:
cycles = list(os.listdir('cycles'))
n = 0
click.echo('Here is the list of available cycles.')
for cycle in cycles:
click.echo(str(n) + ': ' + str(cycle))
n = n+1
nur = int(click.prompt('Please select cycle [nr]', type=click.Choice([str(i) for i in range(n)])))
click.echo('You choose: ' + str(vehicle['name']) + ' and ' + str(cycles[nur] ) )
current_time = datetime.datetime.now()
savename = '_' + str(current_time.year) + '_' + str(current_time.month) + '_' + str(current_time.day) + '_' + str(current_time.hour) + '-' + str(current_time.minute)
filename = 'save/' + str(vehicle['name'])+ '_' + str(cycles[nur])[0:-4] + savename + '.p'
save_files = [save_file for save_file in list(os.listdir('save')) if str(vehicle['name']) + '_' + str(cycles[nur] )[0:-4] in save_file]
if save_files:
click.echo('There are saved files for your configuration, choose one or start a new calculation.')
n = 0
for save_file in save_files:
click.echo(str(n) + ': ' + str(save_file))
n = n+1
click.echo(str(n) + ': ' + 'new calculation')
nr = int(click.prompt('Please select number [nr]', type=click.Choice([str(i) for i in range(n+1)])))
if int(nr) == n:
(cycle, variable_names) = read_drive_cycle(os.path.join('cycles', cycles[nur]), vehicle)
pickle.dump([cycle, variable_names], open(filename,'wb'))
else:
[cycle, variable_names] = pickle.load( open(os.path.join('save', save_files[nr]),'rb'))
else:
(cycle, variable_names) = read_drive_cycle(os.path.join('cycles', cycles[nur]), vehicle)
pickle.dump([cycle, variable_names], open(filename,'wb'))
#plt.ion()
fonts = pyfiglet.FigletFont.getFonts()
ascii_banner = pyfiglet.figlet_format("Plotting",font=fonts[100])
click.clear()
click.echo(ascii_banner)
variable_names.append('Info')
n = 0
click.echo(str(n) + ': ' + 'Exit and close all plots')
n = n+1
for v_name in variable_names[1:-1]:
click.echo(str(n) + ': ' + v_name + ' / time(s)' )
n = n+1
click.echo(str(n) + ': ' + variable_names[-1])
nr = int(click.prompt('Please select number of plot', type=click.Choice([str(i) for i in range(n+1)])))
plt.ion()
while nr != 0:
#for nr in range(len(variable_names)-1):
if variable_names[nr] != 'Info':
fig, ax = plt.subplots(figsize=(6,5))
p1 = ax.plot(cycle[:,0], cycle[:,nr], label = variable_names[nr])
# p2 = ax.bar(labels, V_inv_sim, label = 'Ploss inverter sim', alpha = .6)
# p3 = ax.bar(labels, V_s_sim, label='Ploss static sim', alpha = .6)
# p4 = ax.bar(labels, V_d_sim, bottom = V_s_sim, label='Ploss dynamic sim', alpha = .6)
ax.legend(loc=2)
# if (nr == 15 or nr == 20):
# ax.set_ylim( (0, max( np.nanmax(cycle[:,15]), np.nanmax(cycle[:,20]) ) ) )
if (nr == 16 or nr == 21):
ax.set_ylim( (0, max( np.nanmax(cycle[:,16]), np.nanmax(cycle[:,21]) ) ) )
if (nr == 17 or nr == 22):
ax.set_ylim( (0, max( np.nanmax(cycle[:,17]), np.nanmax(cycle[:,22]) ) ) )
if (nr == 19 or nr == 24 or nr==26):
ax.set_ylim( (0, max( np.nanmax(cycle[:,19]), np.nanmax(cycle[:,24]), np.nanmax(cycle[:,26]) ) ) )
#ax.set_xlim(43.5,72.5)
#ax.bar_label(p1,fmt='%0.4f', label_type='edge')
# ax.bar_label(p2,fmt='%0.0f', label_type='edge')
# ax.bar_label(p3,fmt='%0.0f', label_type='center')
# ax.bar_label(p4,fmt='%0.0f', label_type='center')
ax.set_ylabel(variable_names[nr])
ax.set_xlabel('Time [s]')
ax.grid(True, axis='both', ls="-", color='0.8')
fig.tight_layout()
#plt.show()
click.clear()
click.echo(ascii_banner)
else:
Info_banner = pyfiglet.figlet_format("Info",font=fonts[100])
click.clear()
click.echo(Info_banner)
click.echo('You choose: ' + str(vehicle['name']) + ' and ' + str(cycles[nur] ))
click.echo('The cycle takes: ' + str(cycle[:,0][-1]) + ' s')
click.echo('The distance is: ' + str(np.cumsum(cycle[:,4])[-1]/1000) + ' km')
click.echo('The average speed is: ' + str(np.average(abs(cycle[:,1]))) + ' km/h')
click.echo('The max/min acceleration is: ' + str(np.max((cycle[:,3]))) + ' / ' + str(np.min((cycle[:,3]))) + ' m/s**2')
click.echo('The max slope is: ' + str(np.max((cycle[:,2]))) + ' °')
click.echo('The average power is: ' + str(np.average(abs(cycle[:,6]))/1000) + ' kW')
click.echo('The max speed is: ' + str(np.max(cycle[:,1])) + ' km/h')
click.echo('The max force is: ' + str(np.max(cycle[:,5])) + ' Nm')
click.echo('The max speed of the PMSM is: ' + str(np.max(cycle[:,7])*60) + ' rmp')
click.echo('The max tourque of the PMSM is: ' + str(np.max(cycle[:,8])) + ' Nm')
click.echo('The drive cycle efficiency of the SiC-MOSFET inverter is: ' + str(cycle[:,25][-1] / (cycle[:,25][-1] + cycle[:,19][-1])))
click.echo('The total losses of the SiC-MOSFET: ' + str(cycle[:,19][-1]) + ' kWh')
click.echo('The drive cycle efficiency of the IGBT inverter is: ' + str(cycle[:,25][-1] / (cycle[:,25][-1] + cycle[:,24][-1])))
click.echo('The total losses of the Si-IGBT: ' + str(cycle[:,24][-1]) + ' kWh')
click.echo('Delta Eta SiC-MOSFET vs Si-IGBT: ' + str(cycle[:,25][-1] / (cycle[:,25][-1] + cycle[:,19][-1]) - cycle[:,25][-1] / (cycle[:,25][-1] + cycle[:,24][-1])))
click.pause('Press any key to continue.')
n = 0
click.echo(str(n) + ': ' + 'Exit and close all plots')
n = n+1
for v_name in variable_names[1:-1]:
click.echo(str(n) + ': ' + v_name + ' / time(s)')
n = n+1
click.echo(str(n) + ': ' + variable_names[-1])
nr = int(click.prompt('Please select number of plot', type=click.Choice([str(i) for i in range(n+1)])))
#click.echo(variable_names)
click.echo('simulation done')
plt.close('all')
@cli.command()
@click.option('-v', '--vehicle', type=click.File('r'), default = None,
help ='Here you can specify the vehicle of the vehicles foulder. If none is specified you will be asked to choose.')
@click.option('-T', '--torque', type=float, default = None,
help = 'Torque value for the operation point. If none is specified you will be asked to choose.')
@click.option('-n', '--speed', type=float, default = None,
help = 'Speed in rounds per minute for the operation point. If none is specified you will be asked to choose.')
#@pass_config
def plot_OP(vehicle, torque, speed):
"""Here you can plot one operation point for the permanet-magnet synchronous motor (PMSM)."""
if vehicle == None:
vehicles = list(os.listdir('vehicles'))
n = 0
click.echo('Here is the list of available vehicles.')
for vehicle in vehicles:
click.echo(str(n) + ': ' + str(vehicle))
n = n+1
nr = int(click.prompt('Please select vehicle [nr]', type=click.Choice([str(i) for i in range(n)])))
vehicle = read_toml(os.path.join('vehicles', vehicles[nr]))
click.echo('You choose: ' + str(vehicle['name']))
if torque == None:
torque = click.prompt('Enter torque [Nm] for operation point', type = float)
if speed == None:
speed = click.prompt('Enter speed [rpm] for operation point', type = float)
click.echo('Close plot windows to resume.')
plot_PMSM(vehicle, torque, speed/60)
plt.show()
@cli.command()
@click.option('-v', '--vehicle', type=click.File('r'), default = None,
help ='Here you can specify the vehicle of the vehicles foulder. If none is specified you will be asked to choose.')
@click.option('-qts', '--quantity_t', type=int, default = 90,
help ='Here you can specify the quantity of torque steps. The default value is 50.')
@click.option('-qns', '--quantity_n', type=int, default = 100,
help ='Here you can specify the quatity of speed steps. The default value is 100.')
#@pass_config
def plot_Tn(vehicle, quantity_n, quantity_t):
"""Here you can plot the semiconductor losses (total, conduction and switching) on the speed-torque plane of the permanet-magnet synchronous motor (PMSM) (contourplot)."""
fonts = pyfiglet.FigletFont.getFonts()
ascii_banner = pyfiglet.figlet_format("s-T Plots",font=fonts[100])
click.clear()
click.echo(ascii_banner)
if vehicle == None:
vehicles = list(os.listdir('vehicles'))
n = 0
click.echo('Here is the list of available vehicles.')
for vehicle in vehicles:
click.echo(str(n) + ': ' + str(vehicle))
n = n+1
nr = int(click.prompt('Please select vehicle [nr]', type=click.Choice([str(i) for i in range(n)])))
vehicle = read_toml(os.path.join('vehicles', vehicles[nr]))
click.echo('You choose: ' + str(vehicle['name']))
current_time = datetime.datetime.now()
savename = '_' + str(current_time.year) + '_' + str(current_time.month) + '_' + str(current_time.day) + '_' + str(current_time.hour) + '-' + str(current_time.minute)
filename = 'save/' + str(vehicle['name'])+ '_T_' + str(quantity_t) + '_n_' + str(quantity_n) + savename + '.p'
save_files = [save_file for save_file in list(os.listdir('save')) if str(vehicle['name']) + '_T_' + str(quantity_t) + '_n_' + str(quantity_n) in save_file]
if save_files:
click.echo('There are saved files for your configuration, choose one or start a new calculation.')
n = 0
for save_file in save_files:
click.echo(str(n) + ': ' + str(save_file))
n = n+1
click.echo(str(n) + ': ' + 'new calculation')
nr = int(click.prompt('Please select number [nr]', type=click.Choice([str(i) for i in range(n+1)])))
if int(nr) == n:
(con_values, con_names) = calc_con(vehicle, quantity_n, quantity_t)
pickle.dump((con_values, con_names), open(filename,'wb'))
else:
(con_values, con_names) = pickle.load( open(os.path.join('save', save_files[nr]),'rb'))
else:
(con_values, con_names) = calc_con(vehicle, quantity_n, quantity_t)
pickle.dump((con_values, con_names), open(filename,'wb'))
# calc_Tn(vehicle, qTs, qns)
# (ns, Ts, con_OP, con_i_d, con_i_q, con_v_d, con_v_q, con_P, con_MOSFET_T, con_Mosfet_C, con_Mosfet_S, con_IGBT_T, con_IGBT_C, con_IGBT_S) = con_values
n = 0
click.echo(str(n) + ': ' + 'Exit and close all plots')
n = n+1
for v_name in con_names[3:]:
click.echo(str(n) + ': ' + v_name )
n = n+1
click.echo(str(n) + ': Efficiency MOSFET')
n = n+1
click.echo(str(n) + ': Efficiency IGBT')
n = n+1
click.echo(str(n) + ': Delta Efficiency MOSFET/IGBT')
n = n+1
# click.echo(str(n) + ': ' + variable_names[-1])
nr = int(click.prompt('Please select number of plot', type=click.Choice([str(i) for i in range(n)])))
plt.ion()
while nr != 0:
if nr == 12:
fig,ax = plt.subplots()
levels1 = np.linspace(0.9,1,101)
c1 = ax.contourf(con_values[0]*60, con_values[1], np.abs(con_values[7].T) / (np.abs(con_values[7].T) + np.abs(con_values[8].T)), levels=levels1, cmap='gnuplot', extend = 'min' )
c1.cmap.set_under('black')
bar = fig.colorbar(c1, label='Eta')
bar.set_ticks(list(np.linspace(0.9,1,10)))
ax.set_xlabel('n [rpm]')
ax.set_ylabel('T [Nm]')
ax.set_title('Efficiency MOSFET')
elif nr == 13:
fig,ax = plt.subplots()
levels2 = np.linspace(0.9,1,101)