Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
B
BTW2025
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Issue analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Kristiyan Blagov
BTW2025
Commits
5e6af4c3
Commit
5e6af4c3
authored
1 month ago
by
Kristiyan Blagov
Browse files
Options
Downloads
Patches
Plain Diff
added MERLIN
parent
70edeee4
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
MERLIN.py
+148
-0
148 additions, 0 deletions
MERLIN.py
UCR_Anomaly_Archive/MERLIN3_1.m
+779
-0
779 additions, 0 deletions
UCR_Anomaly_Archive/MERLIN3_1.m
with
927 additions
and
0 deletions
MERLIN.py
0 → 100644
+
148
−
0
View file @
5e6af4c3
# -*- coding: utf-8 -*-
"""
Spyder Editor
This is a temporary script file.
"""
import
pandas
as
pd
import
numpy
as
np
import
matlab.engine
import
os
from
statsmodels.tsa.stattools
import
acf
from
scipy.signal
import
find_peaks
import
time
from
sklearn.preprocessing
import
MinMaxScaler
os
.
chdir
(
os
.
getcwd
()
+
"
\\
UCR_Anomaly_Archive
"
)
files
=
os
.
listdir
()
lstt
=
[]
for
file
in
files
:
if
file
.
endswith
(
"
.txt
"
):
lstt
.
append
(
file
)
#listttt = os.listdir("C:/Users/Kristiyan/Desktop/Uni/Bachelor Thesis/Archive/UCR_TimeSeriesAnomalyDatasets2021/FilesAreInHere/introducingMERLIN")
#lstt = []
#for file in listttt:
# if file.endswith(".txt") and file != "qtdbSel100MLII.txt":
# lstt.append(file)
# Error on datasets "missing"
missing
=
[
'
239
'
,
'
240
'
,
'
241
'
,
'
084
'
]
amplitude_change
=
[
"
013
"
,
"
014
"
,
"
037
"
,
"
042
"
,
"
044
"
,
"
053
"
,
"
057
"
,
"
066
"
,
"
091
"
,
"
100
"
,
"
104
"
,
"
121
"
,
"
122
"
,
"
145
"
,
"
150
"
,
"
152
"
,
"
161
"
,
"
165
"
,
"
174
"
,
"
199
"
,
"
205
"
,
"
215
"
,
"
217
"
,
"
246
"
]
flat
=
[
'
045
'
,
'
078
'
,
'
153
'
,
'
186
'
,
'
236
'
]
freq_change
=
[
'
023
'
,
'
026
'
,
'
032
'
,
'
033
'
,
'
034
'
,
'
040
'
,
'
048
'
,
'
099
'
,
'
101
'
,
'
131
'
,
'
134
'
,
'
140
'
,
'
141
'
,
'
142
'
,
'
148
'
,
'
156
'
,
'
202
'
,
'
222
'
,
'
223
'
,
'
224
'
,
'
227
'
,
'
228
'
,
'
229
'
,
'
244
'
,
'
245
'
,
'
247
'
]
local_drop
=
[
'
005
'
,
'
043
'
,
'
054
'
,
'
063
'
,
'
077
'
,
'
086
'
,
'
092
'
,
'
102
'
,
'
106
'
,
'
113
'
,
'
151
'
,
'
162
'
,
'
171
'
,
'
185
'
,
'
194
'
,
'
200
'
,
'
231
'
,
'
232
'
,
'
233
'
,
'
237
'
,
'
238
'
]
local_peak
=
[
'
007
'
,
'
021
'
,
'
024
'
,
'
025
'
,
'
030
'
,
'
049
'
,
'
058
'
,
'
062
'
,
'
064
'
,
'
085
'
,
'
089
'
,
'
097
'
,
'
115
'
,
'
129
'
,
'
132
'
,
'
133
'
,
'
138
'
,
'
157
'
,
'
166
'
,
'
170
'
,
'
172
'
,
'
193
'
,
'
197
'
,
'
234
'
,
'
235
'
,
'
243
'
]
missing_drop
=
[
'
002
'
,
'
072
'
,
'
110
'
,
'
180
'
]
missing_peak
=
[
'
004
'
,
'
019
'
,
'
035
'
,
'
036
'
,
'
059
'
,
'
060
'
,
'
094
'
,
'
112
'
,
'
127
'
,
'
143
'
,
'
144
'
,
'
167
'
,
'
168
'
,
'
248
'
]
noise
=
[
'
003
'
,
'
008
'
,
'
027
'
,
'
028
'
,
'
029
'
,
'
039
'
,
'
056
'
,
'
067
'
,
'
068
'
,
'
083
'
,
'
095
'
,
'
098
'
,
'
107
'
,
'
111
'
,
'
116
'
,
'
135
'
,
'
136
'
,
'
137
'
,
'
147
'
,
'
164
'
,
'
175
'
,
'
176
'
,
'
191
'
]
outlier_datasets
=
[
'
011
'
,
'
012
'
,
'
015
'
,
'
016
'
,
'
017
'
,
'
018
'
,
'
070
'
,
'
071
'
,
'
096
'
,
'
119
'
,
'
120
'
,
'
123
'
,
'
124
'
,
'
125
'
,
'
126
'
,
'
178
'
,
'
179
'
,
'
192
'
,
'
213
'
,
'
216
'
,
'
220
'
,
'
226
'
]
reverse
=
[
'
020
'
,
'
022
'
,
'
038
'
,
'
052
'
,
'
055
'
,
'
065
'
,
'
090
'
,
'
103
'
,
'
128
'
,
'
130
'
,
'
146
'
,
'
160
'
,
'
163
'
,
'
173
'
,
'
198
'
,
'
201
'
,
'
203
'
,
'
209
'
,
'
212
'
,
'
225
'
,
'
230
'
,
'
242
'
,
'
249
'
]
sampling_rate
=
[
'
050
'
,
'
061
'
,
'
105
'
,
'
158
'
,
'
169
'
]
signal_shift
=
[
'
204
'
]
smoothed_increase
=
[]
steep_increase
=
[
'
051
'
,
'
159
'
]
time_shift
=
[
'
069
'
,
'
074
'
,
'
075
'
,
'
079
'
,
'
080
'
,
'
081
'
,
'
082
'
,
'
087
'
,
'
088
'
,
'
108
'
,
'
177
'
,
'
182
'
,
'
183
'
,
'
187
'
,
'
188
'
,
'
189
'
,
'
190
'
,
'
195
'
,
'
196
'
,
'
206
'
,
'
207
'
,
'
208
'
]
time_warping
=
[
'
031
'
,
'
076
'
,
'
139
'
,
'
184
'
]
unusual_pattern
=
[
'
001
'
,
'
006
'
,
'
009
'
,
'
010
'
,
'
041
'
,
'
046
'
,
'
047
'
,
'
073
'
,
'
093
'
,
'
109
'
,
'
114
'
,
'
117
'
,
'
118
'
,
'
149
'
,
'
154
'
,
'
155
'
,
'
181
'
,
'
210
'
,
'
211
'
,
'
214
'
,
'
218
'
,
'
219
'
,
'
221
'
,
'
250
'
]
def
highest_autocorrelation
(
ts
,
min_size
=
10
,
max_size
=
1000
):
acf_values
=
acf
(
ts
,
fft
=
True
,
nlags
=
int
(
ts
.
shape
[
0
]
/
2
))
peaks
,
_
=
find_peaks
(
acf_values
)
peaks
=
peaks
[
np
.
logical_and
(
peaks
>=
min_size
,
peaks
<
max_size
)]
corrs
=
acf_values
[
peaks
]
if
len
(
peaks
)
==
0
:
peaks
,
_
=
find_peaks
(
acf_values
)
peaks
=
peaks
[
np
.
logical_and
(
peaks
>=
min_size
,
peaks
<
2000
)]
corrs
=
acf_values
[
peaks
]
if
len
(
peaks
)
==
0
:
return
-
1
return
peaks
[
np
.
argmax
(
corrs
)]
correct_discord
=
0
small_discord
=
0
big_discord
=
0
correct_discord_list
=
[]
small_discord_list
=
[]
big_discord_list
=
[]
correct_discord_dist_lower
=
[]
correct_discord_dist_higher
=
[]
small_discord_dist
=
[]
big_discord_dist
=
[]
start_time
=
time
.
time
()
start_process_time
=
time
.
process_time
()
for
dataset
in
lstt
:
name_split
=
dataset
.
split
(
"
_
"
)
# e.g. "if name_split[0] in flat:" can be used to execute only on time series with flat anomalies
if
name_split
[
0
]
in
[
"
004
"
]:
print
(
f
"
Dataset #:
{
name_split
[
0
]
}
"
)
data
=
np
.
array
(
pd
.
read_csv
(
dataset
,
header
=
None
))
name_split
[
6
]
=
name_split
[
6
][:
-
4
]
scaler
=
MinMaxScaler
()
scaled_data
=
scaler
.
fit_transform
(
data
)
scaled_data
=
scaled_data
.
flatten
()
train_idx
=
int
(
name_split
[
-
3
])
begin
=
int
(
name_split
[
-
2
])
end
=
int
(
name_split
[
-
1
])
eng
=
matlab
.
engine
.
start_matlab
()
result
=
np
.
array
(
eng
.
MERLIN3_1
(
scaled_data
[
train_idx
:],
float
(
75
),
float
(
125
)))
count_list
=
[]
for
k
in
range
(
len
(
result
)):
count
=
0
for
l
in
range
(
len
(
result
)):
if
k
!=
l
:
if
np
.
abs
(
result
[
k
]
-
result
[
l
])
<=
100
:
count
+=
1
count_list
.
append
(
count
)
if
len
(
count_list
)
!=
0
:
discord
=
int
(
result
[
np
.
argmax
(
count_list
)])
else
:
discord
=
result
[
25
]
eng
.
quit
()
l
=
end
-
begin
+
1
discord
=
discord
+
train_idx
+
50
print
(
discord
)
if
min
(
begin
-
100
,
begin
-
l
)
<=
discord
and
discord
<=
max
(
end
+
100
,
end
+
l
):
print
(
"
anomaly index correct
"
)
correct_discord
+=
1
correct_discord_list
.
append
(
name_split
[
0
])
correct_discord_dist_lower
.
append
(
abs
(
discord
-
min
(
begin
-
100
,
begin
-
l
)))
correct_discord_dist_higher
.
append
(
abs
(
discord
-
max
(
end
+
100
,
end
+
l
)))
elif
discord
<
min
(
begin
-
100
,
begin
-
l
):
print
(
"
anomaly index too small
"
)
small_discord
+=
1
small_discord_list
.
append
(
name_split
[
0
])
small_discord_dist
.
append
(
abs
(
discord
-
min
(
begin
-
100
,
begin
-
l
)))
elif
discord
>
max
(
end
+
100
,
end
+
l
):
print
(
"
anomaly index too big
"
)
big_discord
+=
1
big_discord_list
.
append
(
name_split
[
0
])
big_discord_dist
.
append
(
abs
(
discord
-
max
(
end
+
100
,
end
+
l
)))
else
:
print
(
f
"
problem with dataset
{
name_split
[
0
]
}
"
)
end_time
=
time
.
time
()
end_process_time
=
time
.
process_time
()
runtime
=
end_time
-
start_time
print
(
"
Runtime:
"
,
runtime
,
"
seconds
"
)
process_time
=
end_process_time
-
start_process_time
print
(
"
Process time:
"
,
process_time
,
"
seconds
"
)
This diff is collapsed.
Click to expand it.
UCR_Anomaly_Archive/MERLIN3_1.m
0 → 100644
+
779
−
0
View file @
5e6af4c3
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment