Skip to content
Snippets Groups Projects
tutorial00_python_ex2.ipynb 21 KiB
Newer Older
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "source": [
    "print(A[[True, False, True]])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "source": [
    "print(A > 5)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "source": [
    "print(A[A > 5])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Nützliche NumPy Funktionen"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "X = np.ndarray((4,4))\n",
    "A = np.zeros((3, 4))\n",
    "B = np.ones((3,4))\n",
    "c = np.arange(0, 1, .1)\n",
    "d = np.linspace(0, 1, 10)\n",
    "I = np.identity(4)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "source": [
    "print(X) # zufällige Werte"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "source": [
    "print(A)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "source": [
    "print(B)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "source": [
    "print(c)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "source": [
    "print(d)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "source": [
    "print(I)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "source": [
    "M = np.linspace(1, 16, 16).reshape((4,4))\n",
    "print(M)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "source": [
    "print(M.T)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "source": [
    "print(M.sum(), M.mean(), M.prod())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "source": [
    "print(M.sum(0), M.mean(0), M.prod(0))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "source": [
    "print(M.sum(1), M.mean(1), M.prod(1))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "source": [
    "x = np.linspace(1,4, 4)\n",
    "print(x)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "source": [
    "print(M.dot(x))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "source": [
    "print(M @ x)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}