
Exploratory script for carbon cycle analysis
on the Tegel Project dataset.

the dataset is represented in the input file 'tp_config.yml'

How to:

Input: Place the input file ('tp_config.yml' by default) in the same directory as the code.
In this dataset, for each construction system, masses per building part are given for each
material use case (each building part being present once per building!).

Input-structure: The structure and level0 keywords from the yml file are referenced in the
code and musn't be changed independently. However, adding lines next to existing ones in a
similar matter doesn't require changes in code.

Output: Create a folder 'export' in the same directory as the code. Table and Graphic files are
being written to this folder.

Terminal: No interaction with or prompt in the Terminal needed. The print statements are
more than nice-to-have. Feel free to intuitively use and extend them for so-called print-
based debugging.

calculations: The whole idea consists of calculating everything on the very level that is given
in the input file, so to take every single material that is used in a part (etc.) of a building, or
an area or what might be of interest in the end. And with this single material, its (sub)fraction
of the final emissions, carbon storage etc.
This emancipates the depth of analysis of the calculations. The opposite case would be if you
calculated only the emissions for e.g. a building and then can't go back to compare the
contributions of the building parts (or materials).
Per material use, the following is being calculated:

co2e_per_building = mass_per_building * co2coeff
total_emissions = co2e_per_building * number_of_buildings

c_storage_per_building = mass_per_building * biom_fraction * carbon_ratio
total_c_storage = c_storage_per_building * number_of_buildings

The main part of this jupyther notebook has the following sections:

1. Preconditions and Loading Input Config
2. Initialisation and Matching Constants
3. Actual Calculations

tg_how_to file:///D:/tg_how_to.html

1 of 11 2/8/2023, 5:01 PM

4. Data Aggregation and Export
5. Plotting and Graph Export

Comparison of the Output with previous work

Beforehand, an excel Sheet was used to calculate and sum the respective inputs.
The following emissions per building were calculated:

Construction
System:

Timber
Frame

Mass
Timber

Light Weight
Timber

Concrete &
Steel

Brick

t CO2e (production): 293.642 242.061 235.071 2681.329 2070.139

For comparison: The following code produces these numbers (names were partly updated
but correspond):
Please note that also many more aggregations of the output data are accesible.

Construction
System:

Timber
Frame

Mass
Timber

Light Weight
Timber

Reinf.
Concrete

Brick-
based

t CO2e (production): 293.642 242.442 235.071 2683.130 2071.941

The discrepancies present result from malconfigurations of the excel sheet and inconsistent
use of emission coefficients for the same material:
e.g. reinforcement (0.68 or 0.683) or clt (0.1299 or 0.1298)
To avoid this, make sure that when copying from an excel sheet, the actual values are being
copied to the configuration file, not only the displayed numbers (in their perhaps limiting
decimal formatting). Also material names should only be referred to one single coefficient at
a tim - if there is two, that there are two materials with different names (only exception: the
coefficient is given as a range, e.g. with minimal and maximal values).

Sidenotes:

• consistent naming: corresponding specific files named with prefix 'tp_'

• At this stage, the input data and the code don't match the uncertainty of literature on
topics as emission coefficients or carbon content of materials. Representing this
dimension of uncertainty (e.g. as error categories min, mean, max) requires adaptation
of the code on a basic level. This raises the question of whether to use one df for all, one
per dimension or one per attribute of interest (e.g. emissions per building).
Recommendation goes towards having all data present in one df, making it universally
accessible but slightly more difficult to group by and pivot at will. Multi-indexing is
promising for that task yet it is quite a logic to itself.

• future to do: should warn if mutliple entries with same material name, as only the first
one will be imported (dicts enforce unique keys)

• adding material use efficiency (discard from processing and refining)

tg_how_to file:///D:/tg_how_to.html

2 of 11 2/8/2023, 5:01 PM

• and transport emissions

▪ from place of material extraction to place of fabrication (including discard mass)
▪ and from place of fabrication to the construction area (only mass used)
▪ (and maybe emissions from discarding itself)

The following code cell is an recursive function (consisting of several functions) that can
handle deeply nested yaml input and returns those as pandas dataframes in a list. It is not
important to get behind its functioning to follow the rest of this code and might as well be
externalised.

Main

1 Preconditions

packages, input file name and loading data in

In []: from typing import Any, Dict, List

import pandas as pd

import yaml

function and helper-function to dynamicly extract nested dict paths to list of lists

def _into_rows(nested_dict: Dict[str, Any], path: List[Any], rows: List[List[Any]]):

for key, value in nested_dict.items():

innerpath = path + [key]

if isinstance(value, dict):

_into_rows(value, innerpath, rows)

else:

rows.append(innerpath + [value])

def _nested_dict_into_rows(nested_dict: Dict[str, Any]) -> List[List[Any]]:

rows = []

_into_rows(nested_dict, [], rows)

return rows

def yaml_to_dict_of_dfs(nested_dict: Dict[str, Any]) -> Dict[Any, Any]:

full_out = {}

for name, sub_config in nested_dict.items():

if isinstance(sub_config, dict):

full_out[name] = pd.DataFrame(_nested_dict_into_rows(sub_config))

print(f"Added: a dataframe with {name=}")

else: #recently added

full_out[name] = {name: sub_config}

print(f"Added: a key with {name=}")

return full_out

tg_how_to file:///D:/tg_how_to.html

3 of 11 2/8/2023, 5:01 PM

The content of the YAML-file tg_config.yml

 is now accessible as "data_dict"

 containing a list of dicts

The content of the YAML-file tg_config.yml

 is now accessible as "data_items"

 containing a dict of dataframes and keys

2.1 Initialising the dataframes with column headers

(Column headers are not given in the input yml file) Number of buildings is not given, but
calculated by division of total building area by area per building.

2.2 Adding given relevant info to main dataframe

CO2 coefficients and information about the fraction of biomass in given materials are added
to the dataframe, being matched by material names.

In []: # packages used in code:

import pandas as pd

import numpy as np

import yaml

used for graphics:

import seaborn as sns

import matplotlib.pyplot as plt

possibly externalised self-written script

from function_flatten_yml import yaml_to_dict_of_dfs

display setting for decimals in dataframes:

pd.set_option('display.float_format', '{:.3f}'.format) # optional

configuration file load-in:

filepath = 'tg_config.yml'

with open(filepath, "r") as file:

data_dict = yaml.safe_load(file) # contains a list of dicts

print(f'The content of the YAML-file {filepath} \n is now accessible as "data_dict"

data_items = yaml_to_dict_of_dfs(data_dict) # contains a dict of dataframes

print(f'The content of the YAML-file {filepath} \n is now accessible as "data_items"

In []: data_items['Material_use'].columns = ['construction_sys', 'building_part', 'material'

data_items['Material_infos_co2coeff'].columns = ['material','co2coeff']

data_items['Material_infos_biom_fraction'].columns = ['material', 'biom_fraction']

future to do: should warn if mutliple entries with same material name, as only the first one will be

number_of_buildings = round(data_dict['area_parameters']['total'] / data_dict['area_parameters'

In []: full_df = (data_items['Material_use']

.merge(data_items['Material_infos_co2coeff'], on='material', how='left')

.merge(data_items['Material_infos_biom_fraction'], on='material', how='left'

tg_how_to file:///D:/tg_how_to.html

4 of 11 2/8/2023, 5:01 PM

3 Calculations

Adding:

• total_masses to full_df (optional, but completes the logic of the dataset)
• co2e_per_building and adding total_emissions to full_df
• c_storage_per_building and adding c_storage_per_building to_full df

construction_sys building_part material mass_per_building co2coeff biom_fraction

0 sys1_timber_frame wall gypsum_fibreboard 14562.544 1.970

1 sys1_timber_frame wall osb 17470.446 0.285

2 sys1_timber_frame wall wooden_frame_6-24 43322.154 0.078

3 sys1_timber_frame wall cellulose_insulation 17841.047 0.240

4 sys1_timber_frame wall wood_fibre_insulation_board 23640.381 0.724

4 DataFrame Grouping and Export

Grouping the Dataframes to be summed up to construction systems (and building parts).

In []: # emissions

full_df["co2e_per_building"] = (

full_df['mass_per_building'] # kg / building

* full_df['co2coeff'] # kg CO2equ / kg material

/ 1000) # t CO2equ / kg CO2equ

full_df["total_emissions"] = (

number_of_buildings # number of buildings

* full_df['co2e_per_building']) # kg CO2equ / building

storage

full_df["c_storage_per_building"] = (

full_df['mass_per_building'] # kg / building

* full_df['biom_fraction'] # kg biomass / kg material

* data_dict['Material_infos_carbon_ratio'] # unit C / unit biomass

/ 1000) # t C / kg C

full_df["total_c_storage"] = (

number_of_buildings # number of buildings

* full_df['c_storage_per_building']) # kg CO2equ / building

total masses (just for completion)

full_df["total_masses"] = (

full_df['mass_per_building'] # kg / building

* number_of_buildings) # number of buildings

In []: # Taking a peek:

full_df.head()

Out[]:

tg_how_to file:///D:/tg_how_to.html

5 of 11 2/8/2023, 5:01 PM

construction_sys mass_per_building co2e_per_building c_storage_per_building total_masses

0 sys1_timber_frame 641273.643 293.631 19666.998 107092698.352

1 sys2_mass_timber 948118.051 242.442 37852.899 158335714.508

2 sys3_light_weight_timber 809595.341 235.071 30293.857 135202421.986

3 sys4_reinforced_concrete 6309512.210 2683.130 0.000 1053688539.055

4 sys5_brick_based 5042379.451 2071.941 0.000 842077368.252

In the following, the main dataframes of interest are being written including masses,
emissions and storage:

• Values per material. Full Dataset, no sums being aggregated.
• Total values per construction systems
• Values per construction systems split into the categories of building parts (wall, ceiling,

roof)

Saving to an subfolder 'export'.

5 Graphs and Graph Export

This section seeks to visualise the emissions:

In []: cols = ['mass_per_building', 'co2e_per_building', 'c_storage_per_building', 'total_masses'

sum_aggr = {f'{col}': "sum" for col in cols}

df_out = full_df.loc[:,['construction_sys', 'building_part', 'mass_per_building', 'co2e_per_building'

df_out_systems_parts = df_out.groupby(['construction_sys', 'building_part']).agg(sum_aggr

df_out_systems = df_out.groupby(['construction_sys']).agg(sum_aggr).reset_index()

for easy debugging:

data_check = full_df[['construction_sys', 'building_part' ,'mass_per_building', 'co2e_per_building']

print(data_check)

Out[]:

In []: df_out.to_csv(r'./export/tg_subtotals.csv', sep=',', encoding='utf-8', index=False,

df_out_systems.to_csv(r'./export/tg_total_per_csys.csv', sep=',', encoding='utf-8',

df_out_systems_parts.to_csv(r'./export/tg_per_csys_and_part.csv', sep=',', encoding=

for tab-seperated use sep= '\t'

na_rep= can be changed as needed (e.g. to NA, NaN, 0)

tg_how_to file:///D:/tg_how_to.html

6 of 11 2/8/2023, 5:01 PM

In []: df_graph1 = (df_out_systems_parts

.groupby(['construction_sys', 'building_part']).agg({'total_emissions':

.reset_index()

.pivot(index='construction_sys', columns='building_part', values='total_emissions'

)

from matplotlib import cm

cmap = cm.get_cmap('Spectral') # example of a colormap that could be used

ax = df_graph1.plot(kind= 'bar', stacked=True,

colormap=cmap

grid=True

)

for c in ax.containers: # value labels

Optional: if the segment is small or 0, customize the labels

labels = ['{0:.0f}kt'.format(v.get_height()/1000) if v.get_height() > 0 else ''

remove the labels parameter if it's not needed for customized labels

ax.bar_label(c, labels=labels, label_type='center') #, fmt='%0.2f' could be used but is overwritte

plt.title('Emissions Tegel Project \n167 buildings', fontsize=16) # add overall title

plt.xlabel('') # add axis titles

plt.ylabel('material production emissions \nin t CO2')

plt.xticks(rotation=45) # rotate x-axis labels

EXPORT (before printing! ...else the saved graph is empty)

plt.savefig(r'./export/tg_emissions_per_csys_and_part.png', bbox_inches='tight', dpi

plt.show()

tg_how_to file:///D:/tg_how_to.html

7 of 11 2/8/2023, 5:01 PM

tg_how_to file:///D:/tg_how_to.html

8 of 11 2/8/2023, 5:01 PM

In []: mypalette = {"sys1_timber_frame":"mediumseagreen",

"sys2_mass_timber":"lime",

"sys3_light_weight_timber":"yellowgreen",

"sys4_reinforced_concrete": "steelblue",

"sys5_brick_based": "firebrick"}

g =sns.catplot(x='building_part', y='total_emissions', hue='construction_sys', data=

kind='bar',

palette=mypalette)

g.fig.set_size_inches(12,8)

g.fig.subplots_adjust(top=0.81,right=0.78)

ax = g.facet_axis(0,0)

for p in ax.patches:

ax.text(p.get_x(),

p.get_height() + 3000,

'{0:.2f}kt'.format(p.get_height()/1000), #Used to format it K representation

color='black',

rotation=45,

size='small')

sns.set(style='darkgrid')

plt.title('Detailed Emissions\nTegel Project\n167 Buildings', fontsize=16) # add overall title

plt.xlabel('') # add axis titles

plt.ylabel('material production emissions \nin t CO2')

plt.xticks(rotation='horizontal') # rotate x-axis labels

EXPORT (before printing! ...else the saved graph is empty)

plt.savefig(r'./export/tg_detailed_emissions_unstacked.png', bbox_inches='tight', dpi

plt.show()

tg_how_to file:///D:/tg_how_to.html

9 of 11 2/8/2023, 5:01 PM

This section seeks to visualise carbon storage:

In []: df_graph2 = (df_out_systems_parts

.groupby(['construction_sys', 'building_part']).agg({'total_c_storage':

.reset_index()

.pivot(index='construction_sys', columns='building_part', values='total_c_storage'

)

df_graph2_filtered = df_graph2[(df_graph2['ceiling'] != 0) & (df_graph2['roof'] != 0

from matplotlib import cm

cmap = cm.get_cmap('Spectral') # example of a colormap that could be used

ax = df_graph2_filtered.plot(kind= 'bar', stacked=True,

label= 'plot_storage_per_csys_and_part',

colormap=cmap,

grid=True)

for c in ax.containers: # value labels

Optional: if the segment is small or 0, customize the labels

labels = ['{0:.0f}kt'.format(v.get_height()/1000) if v.get_height() > 0 else ''

remove the labels parameter if it's not needed for customized labels

ax.bar_label(c, labels=labels, label_type='center') #, fmt='%0.2f' could be used but is overwritte

plt.title('Carbon Storage Tegel Project \n167 buildings', fontsize=16) # add overall title

plt.xlabel('') # add axis titles

plt.ylabel('carbon storage \nin t C')

plt.xticks(rotation=45) # rotate x-axis labels

EXPORT (before printing! ...else the saved graph is empty)

plt.savefig(r'./export/tg_storage_per_csys_and_part.png', bbox_inches='tight', dpi=300

plt.show()

tg_how_to file:///D:/tg_how_to.html

10 of 11 2/8/2023, 5:01 PM

tg_how_to file:///D:/tg_how_to.html

11 of 11 2/8/2023, 5:01 PM

