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Zusammenfassung

Der heutige Alltag wird dominiert von elektrischen und elektronischen Geräten,
deren Funktionsweise auf dem Fluss von elektrischem Strom basiert. Stromfluss
wird in Ampere gemessen. Ein Stromfluss von einem Ampere bedeutet, dass
sich 6.241.509.647.120.418.000 Elektronen pro Sekunde durch ein Kabel oder
Ähnliches bewegen. Selbst bei Geräten, denen umgangssprachlich ein geringer
Stromverbrauch zugeschrieben wird, beispielsweise der Standby-Leuchtdiode ei-
nes Fernsehers, liegt ein Stromfluss im Bereich von einigen mA vor. Dies bedeu-
tet, dass sich die Anzahl der durch die Leuchtdiode fließenden Elektronen auf
einige Billiarden Elektronen pro Sekunde, also ein Tausendstel der oben angege-
benen Zahl, reduziert. Bei derart großen Stromflüssen sind selbst Schwankungen
um einige Millionen Elektronen pro Sekunde kaum messbar. Sie haben folglich
auch keine Auswirkungen auf die Funktionsweise der Geräte.

Die rasanten Fortschritte in Nanotechnologie und Messtechnik haben es jedoch
ermöglicht, sehr kleine Strukturen herzustellen und den Stromfluss in extrem
kurzen Zeitintervallen zu messen. Dabei ist es sogar möglich die Elektronen
einzeln zu detektieren.

Bei dieser detaillierten Betrachtung der speziellen Nanostrukturen liefert die
Angabe des Stroms eine unzureichende Beschreibung der Gegebenheiten, da
sich hier Schwankungen des Stroms stark bemerkbar machen. Um eine geeignete
Beschreibung zu finden, wurde in den letzten Jahrzehnten die Methode der Full
Counting Statistics entwickelt.

Hierbei werden neben dem Erwartungswert der geflossenen Elektronen, wel-
cher für die Berechnung des klassischen Stroms hinreichend war, zusätzlich
noch die Standardabweichung, die Schiefheit, die Steilheit sowie weitere Ver-
teilungsmomente der geflossenen Elektronen angegeben. Demzufolge entsteht
eine vollständige Wahrscheinlichkeitsverteilung (Full Counting Statistics) für
die Anzahl der geflossenen Teilchen nach einer bestimmten Zeit.

Diese Wahrscheinlichkeitsverteilung wurde auch von Seiten der theoretischen
Physik erklärt, wobei folgendes Modell angenommen wurde.

Elektronen fließen aus einem klassischen, makroskopischen Reservoir, durch
eine Nanostruktur, in ein anderes makroskopisches Reservoir. Dabei ist die
Nanostruktur als so klein anzusehen, dass hier quantenmechanische Effekte
berücksichtigt werden müssen. Zur einfacheren Orientierung bezeichnet man
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die Quelle der Elektronen als linkes Bad, das Ziel als rechtes Bad und die Na-
nostruktur in der Mitte als System.

In der üblichen theoretischen Beschreibung wird die Verbindung zwischen Sys-
tem und Bad durch eine konstante Tunnelrate beschrieben. Diese Tunnelrate
gibt an, wie viele Elektronen in einer bestimmten Zeit vom Bad ins System
tunneln.

In der vorliegenden Arbeit wird hingegen angenommen, dass diese Tunnelraten
sich nach jedem Tunnelvorgang ändern können. Die Tunnelraten sind demzu-
folge nicht länger konstant.

Aus dieser neuen Betrachtung wird im ersten Teil der Arbeit eine verallgemei-
nerte Mastergleichung hergeleitet, die für konstante Tunnelraten, mit der be-
kannten n-aufgelösten Mastergleichung übereinstimmt. Diese hergeleitete Mas-
tergleichung beschreibt das Verhalten des Systems und ermöglicht es, unter Ver-
wendung von bekannten Rechenverfahren, auf den Strom und die Wahrschein-
lichkeitsverteilung der geflossenen Teilchen zu schließen. Diese Rechenverfahren
werden im ersten Teil diskutiert und für ihre Anwendung im zweiten Teil der
Arbeit optimiert.

Im zweiten Teil der Arbeit wird, die in der Festkörperphysik übliche Annahme
getroffen, dass die Tunnelraten statistisch verteilt sind. Nach jedem Tunnelpro-
zess wird quasi eine neue Rate ’gewürfelt’. Unter dieser Annahme wird dann
die Full Counting Statistic für die bekannten Nanostrukturen Quantenpunkt-
kontakt, Quantenpunkt und Doppelquantenpunkt berechnet.

Dabei stellt sich heraus, dass für Systeme ohne relevante interne Dynamik
(Quantenpunkt und Quantenpunktkontakt) die Bekannte Formel für den Strom
verwendet werden kann. Allerdings müssen in dieser bekannten Formel für kon-
stante Tunnelraten die inversen Tunnelraten durch den Mittelwert der inversen
Tunnelraten ersetzt werden. Der Mittelwert der inversen Rate, der mathema-
tisch als erstes negatives Verteilungsmoment definiert werden kann, wird aus
Gründen der Anschaulichkeit als Wartezeit bezeichnet. Dieses erste wichtige
Ergebnis, für den Strom bei Systemen ohne relevante interne Systemdynamik,
kann mit folgendem Beispiel aus dem Alltag verglichen werden:

Stellt man sich beispielsweise eine Fertigungslinie in einer Fabrik vor
und betrachtet dort einen Fertigungsprozess, der aus mehreren se-
quentiell ablaufenden Schritten besteht. Der Erwartungswert der für
den Fertigungsprozess benötigten Zeit, ist gleich der Summe der Er-
wartungswerte der Zeiten für die Teilschritte. Der Kehrwert dieser
Zeit die zu erwartende Fertigungsrate. Die Berechnung der mittle-
re Fertigungsrate aus den mittleren Raten für die Teilschritte ist
offensichtlich unmöglich.

Bezogen auf den Elektronenstrom bedeutet dies, dass die Wartezeiten (und nicht
die Tunnelraten) die kanonischen Größen zur Beschreibung des Stroms darstel-
len.

Im Fall des Doppelquantenpunkts, bei dem die interne Systemdynamik eine ent-
scheidende Rolle spielt und quantenmechanische Effekte berücksichtigt werden
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müssen, stellt man fest, dass der Strom nicht mehr alleine durch die Mittelwerte
der Wartezeiten ausgedrückt werden kann.

Hier müssen sowohl negative als auch positive Verteilungsmomente zur Berech-
nung verwendet werden, da sehr kleine Tunnelraten zu sehr großen Wartezeiten
führen und umgekehrt. Betrachtet man Verteilungen, die in der Nähe der Rate
null (entspricht einer sehr langen Wartezeit) einen messbar großen Wert anneh-
men, so wird der Stromfluss zunehmend geringer. Für bestimmte Verteilungen
kann es sogar dazu kommen, dass der Erwartungswert des Stroms null wird,
also der Stromfluss stoppt.

Dies ist ein deutlicher Unterschied zum Fall der Systeme ohne interne Dynamik,
bei denen der Erwartungswert des Stroms selbst bei endlichen Wahrscheinlich-
keiten für beliebig große, aber endliche, Wartezeiten konstant bleibt.

Im dritten Teil der Arbeit wird, die im ersten Teil hergeleitete, verallgemeinerte
Mastergleichung auf spezielle Fälle für deterministische Tunnelraten angewen-
det. Es wird beispielsweise untersucht, wie sich ein System verhält, bei dem bis
auf eine alle Tunnelraten konstant sind. Weiterhin wird ein System mit alter-
nierenden Tunnelraten untersucht.

Abschließend wird eine Simulation vorgestellt, bei der Verfahren der Rück-
kopplungskontrolle auf das Quantenpunktkontaktsystem mit zufällig verteilten
Tunnelraten angewendet werden.



viii

Danksagung

An erster Stelle danke ich Prof. Dr. Tobias Brandes für seine erstklassige Be-
treuung dieser Diplomarbeit. Als Diplomand wurde ich von Anfang an als voll-
wertiges Mitglied in die Arbeitsgruppe aufgenommen und während der gesamten
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Vorwort

Der inhaltliche Teil der Diplomarbeit ist in englischer Sprache verfasst.

Dabei wurde auf eine ausführliche Einführung der verwendeten theoretischen
Konzepte verzichtet, da diese größenteils ausführlich in den Hauptdiplomsvorle-
sungen1 zur theoretischen Physik behandelt werden. Die für das Verständnis der
Arbeit wichtigsten Methoden sind jedoch im Anhang knapp zusammengefasst.

Bei der Gliederung der Arbeit wurde die Priorität auf die inhaltiche Struktur
gelegt und nicht (wie allgemein üblich) auf Kapitel gleicher Länge. Dies soll den
offenen Charakter der Fragestellung widerspiegeln.

Der inhaltliche Schwerpunkt dieser Arbeit liegt auf einer ausführlichen Diskus-
sion der Beispiele für zufällige Tunnelraten (Kapitel 5).

Die Ausgestaltung der einzelnen Kapitel variiert erheblich. Insbesondere der
Teil III der Arbeit ist weniger ausführlich gestaltet. Dem Author war es jedoch
wichtig, dass auch die Überlegungen in der Diplomarbeit dokumentiert werden,
die zum aktuellen Zeitpunkt nur peripher bedeutsam sind. Diese können als
gute Basis für zukünftige Arbeiten dienen.

Kapitel 6.2 fasst die Teile I und II zusammen. Eine Veröffentlichung dieses Ka-
pitels in Form eines Papers ist geplant. Ein Beginn mit Kapitel 6.2 oder dem
Beispiels des Single Dots (Kapitel 5.2) bietet sich somit als Quereinstieg an.

Der Text sowie die Mathematica Quelltexte und Animationen stehen zusätzlich
unter https://fcs.physikerwelt.de als Onlineversion zur Verfügung. Der-
zeit sind diese Inhalte nicht öffentlich einsehbar. Für interessierte Leser besteht
jedoch die Möglichkeit einen Zugang einzurichten.

Kapitel die für den weiteren Verlauf der Arbeit nicht entscheidend sind, sind
mit einem * gekennzeichnet.

1 Eine Mitschrift der Vorlesungsreihe von Prof. Dr. E. Schöll, die mit Methoden des seman-
tischen Internets aufgearbeitet wurde, kann auf der Webseite http://wiki.physikerwelt.de

eingesehen und weiterbearbeitet werden.
Außerdem finden sich an dieser Stelle Ausschnitte aus Mitschschriften zu einer Vorlesung

zur fortgeschrittenen Quantemechanikvorlesung von Prof. Dr. T. Brandes und zur Thermo-
dynamikvorlesung von Prof. Dr. A. Knorr.

Das Projekt befindet sich derzeit in ein einem Teststadium. Die dort zu findenden Informa-
tionen sind nicht authorisiert.

https://fcs.physikerwelt.de
http://wiki.physikerwelt.de
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Full Counting Statistics in
Master Equations
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Chapter 1

Introduction

Nowadays electrical and electronic devices are an integral part of daily life.
Their function is based on current flow, which is measured in Ampere. The
current of one Ampere is equal to 6.241.509.647.120.418.000 electrons passing
a conductor in the time interval of one second. Charge transport in electrical
components, which can be seen as macroscopic systems, is described by the
current. For these types of systems a repeating current measurement reading
will not change if the overall setup is not being changed. So far this is a known
fact.

Investigating smaller systems, where quantum effects occur, measurement read-
ings of the current will fluctuate, even if the setup is not being changed. There-
fore, it is no longer sufficient to characterize the current with a single value, like
the average current. A more detailed description is required, based on single
counts of electrons. From those counts, probabilities can be derived with regard
to the amount of transported electrons per time interval. This method is called
Full Counting Statistic (FCS).

Based on such investigations the field of Full Counting Statistics has been de-
veloped over the past decades [Levitov et al., 1996]. Full Counting Statistics
investigates setups, where one ore more macroscopic reservoirs of electrons are
connected to a microscopic quantum system. The main focus of recent investiga-
tions was to determine the connection between the macroscopic and microscopic
system. As a result a constant tunneling rate was defined, which is the most
effective way of description so far. This was done with respect to the assumption
that the macroscopic system can not be influenced by the microscopic system.

In this thesis, the hypothesis that the tunneling rate is a constant value, was
dropped. It is being assumed that the rate might change, when an electron has
jumped from the reservoir to the microscopic system.

As a first step of the new approach, a generalized version of the Quantum
Master Equation is derived. This equation describes the behavior of the
quantum system and is the corner stone to obtain current and higher cumu-
lants. Afterwards, a proceeding to calculate the Full Counting Statistics of
random distributed rates is developed. As a prove of concept this new calcu-
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4 CHAPTER 1. INTRODUCTION

lation method was applied to three microscopic systems setups. The results
converged to the known case for tunnel rate distributions with a small variance.

It turns out that the inverse of the tunneling rate, which is called waiting time
here, plays a fundamental role in this context, and is the canonical formalism
to describe the Full Counting Statistics of mesoscopic systems with random
behavior. For systems without internal dynamics, i.e. Tunneling Junction and
Single Quantum Dot, the mean value of the average current is proportional to
the inverse of the sum of the mean of the waiting times. This result is also
obtained by replacing the waiting times in the formula for the constant rate
current by their means. This leads to a false result. At this point it has to be
mentioned that the calculations are done in sequential tunneling limit. With
the consequence that there is always only one particle in the system. For these
systems without internal dynamics, a comparison with the classical assembly
line problem is possible. Thinking of one process, which consists of several sub
processes. The average time for the process (which is the inverse of the average
flow) is the sum of the averages for the sub processes. It is not possible to gain
the average time (or rate) from a combination of the average rates.

Even more exciting are the results for the Double Quantum Dot, which involves
internal system dynamics. It concludes that electrons can jump ‘backwards and
forwards’ and enter coherent states. Here the results are separated from the
case of constant rates. The current no longer only depends on the average wait-
ing times, but rather on the relationship of negative and positive distribution
moment of the waiting time, respectively inverse tunneling rate distribution.
Especially, if the probability for small rates raises and the expectation value is
fixed, the current decreases.

In the last part of this thesis, there are some considerations, how the formalism
can be applied to special setups of deterministic tunneling rates. For example
the influence of an impurity for a process with constant rates is investigated and
the expected result is obtained.
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Overview

The thesis consists of three parts, which are structured in nine chapters.

Part I treats the problem on a formal and abstract level.

In chapter 1 a general introduction to Full Counting Statistics and mesoscopic
physics is given. The wide field of application of Full Counting Statistics is
sketched and the economic relevance of its application in mesoscopic physics is
pointed out.

In chapter 2 a new derivation for the n-resolved Quantum Master Equation
with n-dependent transmission rates is developed. Therefore the Nakajima-
Zwanzig Projection operator technique is used. Furthermore the Born-Markov
Approximation is applied.

Independently from the derivation the n-dependent Quantum Master Equation
is formally defined in chapter 3. The forms and representations of this equa-
tion are presented and the counting field is introduced. It is discussed, which
approximations lead to good results in the long-time limit. Furthermore the
known formulas for n-independent rates are derived as special case.

More demonstrative is part II. Random and uncorrelated tunneling rates are
handled with explicit calculations there.

Chapter 4 shows, how to deal with random tunneling rates or waiting times in
general. The proposed way, to replace the current and the higher cumulants by
their expectation values, allows a procedure analogically to the case of constant
rates.

The 5’th chapter is representing the main focus of this thesis. The procedure,
developed in the former chapter, is applied to simple example setups with known
results for constant rates.

Concluding, a summary of part I and II with a comparison between the systems
follows in chapter 6.2. This summary is planned to be published in a paper and
addresses the advanced reader.

Part III is the creative portion of this thesis.

In chapter 7 Tunneling Junction with constant rates, with the exception of one
impurity, is described and the time-resolved Full Counting Statistics is explicitly
calculated.

Chapter 8 comes up with the idea to use a Tunneling Junction with alternating
rates to simulate the behavior of a Quantum Dot.

Finally, the 9’th chapter is said to be a thought provoking impuls to apply
the methods of feedback control to random distributions. Therefore, a numer-
ical simulation is deployed, which opens the question of the maximal feedback
strength.



6 CHAPTER 1. INTRODUCTION

Dictionary

In the following a very brief explanation of some important terms is given in
dictionary style.

Mesoscopics The default physics canon handles macroscopic objects as for example
planets or billiard balls in the context of classical mechanics. Microscopic
objects like the hydrogen atom are handled in the context of quantum
mechanics.

This raises the question about the boundaries between both fields and
creates the field of mesoscopic physics. In mesoscopic physics one is aware
of quantum mechanical features, which occur, if a macroscopic object is
scaled down to microscopic length scales. The length scale, where quan-
tum mechanics effect occur, is about 100 nm. Consequently this field of
research stands in connection to nanotechnology that has developed to a
new branch of economical interest [BMB, 2011].

Transport In this thesis the transport of charge through a mesoscopic structure is
investigated. In the macroscopic, classical case this charge transfer is de-
scribed by the (average) current. In the mesoscopic regime this description
is too rough. A more detailed view is required, which is provided by Full
Counting Statistics.

Full Counting Statistics ’Full Counting Statistics is the theory of quantum statistical properties of
transport phenomena’ [Belzig, 2005].

Full Counting Statistic (FCS) has attracted worldwide attention in the
theoretical [Levitov et al., 1996] an experimental [Reulet et al., 2003]
examination over the last decades. Not only in the mesocopic physics,
but also in other physical fields, as well as in chemistry or biology, Full
Counting Statistics now plays a decisive role. With its historical roots
in quantum optics the terminology was adopted by Levito and coworkers
to mesocopic transport problems [Nazarov and Division, 2003, Büttiker,
1992, Datta, 1997, Lenstra, 1982, Emary, 2009, Brandes, 2007].

Investigated setup In this work one will regard quantum mechanical systems, which are con-
nected to a classical electron reservoir.

Experiment The investigated systems are not only theoretically consideration, but ex-
ist in reality. It should be pointed out that, especially the Single and
Double Quantum Dot, where the calculations in chapter 5 base on, were
build up experimentally e.g. by [Hanson et al., 2006]. For the physical
implementation Hanson an coworkers used a two dimensional electron gas
(cf. figure 1.1) .

For further information on nanostructures see [Skobel’tsyn and Wood, 1972,
Nazarov and Blanter, 2009, Schöll, 1998, Sohn et al., 1997, Datta, 1995, J.Jacack,
1998, Jäckle, 1978] as well as [Emary, 2009], which was the base for this thesis.



7

5

2DEG

gate

Ohmic
contact

depleted
region

GaAs

AlGaAs

200 nm

c)

IQPC IQPC

IDOT

a)

b)

200 nm

IDOT

FIG. 2 Lateral quantum dot device defined by metal surface
electrodes. (a) Schematic view. Negative voltages applied
to metal gate electrodes (dark gray) lead to depleted regions
(white) in the 2DEG (light gray). Ohmic contacts (light gray
columns) enable bonding wires (not shown) to make electri-
cal contact to the 2DEG reservoirs. (b)-(c) Scanning elec-
tron micrographs of a few-electron single-dot device (b) and a
double-dot device (c), showing the gate electrodes (light gray)
on top of the surface (dark gray). The white dots indicate the
location of the quantum dots. Ohmic contacts are shown in
the corners. White arrows outline the path of current IDOT

from one reservoir through the dot(s) to the other reservoir.
For the device in (c), the two gates on the side can be used to
create two quantum point contacts, which can serve as elec-
trometers by passing a current IQPC . Note that this device
can also be used to define a single dot. Image in (b) courtesy
of A. Sachrajda.

a wide range while keeping the tunnel rates high enough
for measuring electron transport through the dot.
Applying the same gate design principle to a dou-

ble quantum dot, Elzerman et al. demonstrated in
2003 control over the electron number in both dots
while maintaining tunable tunnel coupling to the reser-
voir (Elzerman et al., 2003). Their design is shown in
Fig. 2c (for more details on design considerations and re-
lated versions of this gate design, see Hanson (2005)).
In addition to the coupled dots, two quantum point con-
tacts (QPCs) are incorporated in this device to serve as
charge sensors. The QPCs are placed close to the dots,
thus ensuring a good charge sensitivity. This design has

become the standard for lateral coupled quantum dots
and is used with minor adaptions by several research
groups (Petta et al., 2004; Pioro-Ladrière et al., 2005);
one noticable improvement has been the electrical iso-
lation of the charge sensing part of the circuit from the
reservoirs that connect to the dot (Hanson et al., 2005).

C. Measurement techniques

In this review, two all-electrical measurement tech-
niques are discussed: i) measurement of the current due
to transport of electrons through the dot, and ii) detec-
tion of changes in the number of electrons on the dot with
a nearby electrometer, so-called charge sensing. With the
latter technique, the dot can be probed non-invasively in
the sense that no current needs to be sent through the
dot.

The potential of charge sensing was first demonstrated
in the early 1990s (Ashoori et al., 1992; Field et al.,
1993). But whereas current measurements were al-
ready used extensively in the first experiments on quan-
tum dots (Kouwenhoven et al., 1997), charge sens-
ing has only recently been fully developed as a spec-
troscopic tool (Elzerman et al., 2004a; Johnson et al.,
2005a). Several implementations of electrometers cou-
pled to a quantum dot have been demonstrated: a single-
electron transistor fabricated on top of the heterostruc-
ture (Ashoori et al., 1992; Lu et al., 2003), a second
electrostatically defined quantum dot (Fujisawa et al.,
2004; Hofmann et al., 1995) and a quantum point contact
(QPC) (Field et al., 1993; Sprinzak et al., 2002). The
QPC is the most widely used because of its ease of fabri-
cation and experimental operation. We discuss the QPC
operation and charge sensing techniques in more detail
in section V .

We briefly compare charge sensing to electron trans-
port measurements. The smallest currents that can be
resolved in optimized setups and devices are roughly
10 fA, which sets a lower bound of order 10 fA/e ≈
100 kHz on the tunnel rate to the reservoir, Γ,
for which transport experiments are possible (see e.g.
Vandersypen et al. (2004) for a discussion on noise
sources). For Γ < 100 kHz the charge detection technique
can be used to resolve electron tunneling in real time. Be-
cause the coupling to the leads is a source of decoherence
and relaxation (most notably via cotunneling), charge
detection is preferred for quantum information purposes
since it still functions for very small couplings to a (sin-
gle) reservoir.

Measurements using either technique are conveniently
understood with the Constant Interaction model. In the
next section we use this model to describe the physics of
single dots and show how relevant spin parameters can
be extracted from measurements.

Figure 1.1: Lateral quantum dot device defined by metal surface electrodes.
(a) Schematic view. Negative voltages applied to metal gate electrodes
(dark gray) lead to depleted regions (white) in the 2DEG1 (light gray).
Ohmic contacts (light gray columns) enable bonding wires (not shown) to
make electrical contact to the 2DEG reservoirs.
(b)-(c) Scanning electron micrographs of a few-electron single-dot device
(b) and a double-dot device (c), showing the gate electrodes (light gray)
on top of the surface (dark gray). The white dots indicate the location
of the quantum dots. Ohmic contacts are shown in the corners. White
arrows outline the path of current IDOT from one reservoir through the
dot(s) to the other reservoir. For the device in (c), the two gates on the
side can be used to create two quantum point contacts, which can serve as
electrometers by passing a current IQPC . Note that this device can also
be used to define a single dot. Image in (b) courtesy of A. Sachrajda.
Image and description from [Hanson et al., 2006]





Chapter 2

n-dependent Master
Equation: Derivation

In this chapter the n-resolved Quantum Master Equation with n-dependent
tunneling rates (nQME) is derived. At first the nQME is motivated and dis-
tinguished from the ordinary n-resolved Quantum Master Equation in section
2.1. In a second step the Nakajima- Zwanzig Equation is used to derive a gen-
eral form of the nQME in section 2.2. Finally, a Lindblad similar form of the
nQME is obtained, by performing a wide range of assumptions in section 2.3.

2.1 Motivation and configuration

The derivation of the n-resolved Quantum Master Equation

∂tρ
(n)(t) = Lρ(n)(t) + J ρ(n−1)(t) (2.1)

for constant tunneling rates Γ is well known and is an integral part of many
physic lectures [Brandes, 2007, Emary, 2009, Breuer and Petruccione, 2002].

For these derivations the system bath theory is used, in which the world is
divided into two parts:

• the system, whereon the investigations are made

• the rest, the bath, which is assumed to be constant and influences the
system in a specific way

9
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In this work one additional external parameter, the number of particles in the
reservoirs (bath) Nα, is taken into account. This additional information will
cause n-dependent tunneling rates Γ(n), which cause the n-resolved Quantum
Master Equation with n-dependent tunneling rates (nQME)

∂tρ
(n)(t) = L(n)

0 ρ(n)(t) + J n−1ρ
(n−1)(t). (2.2)

To achieve a comfortable access to the derivation and a demonstrative model,
the following assumptions are made. Not all assumptions are really needed.
They can be neglected later on, if they where not used, for achieving more
general statements.

The following setup is given for this thesis:

• There are two reservoirs (called left and right), which are not interacting
with each other.

• There is a system, which interacts with the reservoirs in the following way:

Particles (particularly electrons) can jump from the left reservoir to the

system. This process happens with the rate Γ
(n)
L . The number of particles

in the left reservoir changes from NL to NL − 1.

Particles can jump from the system to the right reservoir with the rate

Γ
(n)
R and the number of particles in the right reservoir changes to NR + 1.

• At one instant of time, there can be only one particle in the system.1

• The reservoirs do not change their particle number aside from an interac-
tion with the system. Therefore the numbers NL and NR are in a fixed
relationship (cf. figure 2.1).

• A new number n is introduced, which stands for the number of particles
transported through the system. This variable is used as index for the
rates and the system density matrix.

left reservoir
jump−−−−→ system

jump−−−−→ right reservoir

(NL, NR, n)
Γ

(n)
L−−−−→ (NL − 1, NR, n)

Γ
(n)
R−−−−→ (NL − 1, NR + 1, n+ 1)

Figure 2.1: Abstract model with
NL: number of particles in the left reservoir
NR: number of particles in the right reservoir
n: number of particles transported through the system

1This assumption was not explicitly used in the derivation. However, all system in this
thesis fulfill that requirement.
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GL
NL

GR
NR

µL

µR

·B,L
NL

·B,R
NR

Ρ
nt

system targetsource

Figure 2.2: Scheme of the setup

Content of this chapter

This chapter might be observed apart from the other chapters of this thesis. As
it is not necessary for the comprehension of the following chapters, it can be
skipped.

In the following the derivation of the n-resolved Quantum Master Equation
is started on a microscopic level. Then the Nakajima-Zwanzig Formalism is
applied. The knowledge of the superoperator-formalism (cf. appendix B.3,
p. 138) and a basic understanding of the projection operator technique are
the precondition for the comprehension of the following chapter compare with
perturbation theory [Brandes, 2009, 3.7.1].
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2.2 Nakajima-Zwanzig Projection

As already mentioned before the new aspect, proposed in this thesis, is the
variability of the tunneling rates, which depend on the number of particles that
tunneled through the system. For the default approach [Brandes, 2007, Pöltl,
2008] for constant tunneling rates the Quantum Master Equation is derived
by using the common system bath theory. After that the complete system
density matrix is transformed to the n-resolved (conditioned) system density
matrix by an procedure called ’decomposition into histories’. This procedure
originally comes from quantum jump approaches [Lambert, 2005, 5.27-5.37].

In contrast the derivation, developed in this thesis, arises from the projection
operator technique proposed by Nakajima and Zwanzig [Kühne and Reineker,
1978, Zwanzig, 1960, Nakajima, 1958].

For variable tunneling rates the bath cannot be assumed as constant, because
some information of the system influences the bath. Therefore, the point of
view has changed.

From now on the partition of the world is no longer done with regard to geomet-
ric properties like in thermodynamics. The approach is based on information
theory. All information of interest are projected into the subspace of the relevant
information [Breuer and Petruccione, 2002, Kato, 2004]. In the investigated case
the part of interest is the system-density-operator and the information of the
quantity of particles, which have been transported through the system.

2.2.1 Projection operator

The complete density operator % describes the behavior of the system (i.e. the
Quantum Dot) and the environment (i.e. the left and the right reservoir). This
information is much and can hardly be described or managed.

By applying an projection (super) operator (P), this density operator is sim-
plified by disregarding the information, which is not in focus of interest. The
precise form of this operator will be discussed later on. At first some general
properties of this projection operator will be pointed out.

P2 ≡P (2.3)

Q ≡12 − P (2.4)

⇒ Q2 =Q (2.5)

⇒ QP =PQ = 0 (2.6)

2Identity-superoperator
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2.2.2 Nakajima-Zwanzig Equation

The Liouville-von Neumann Equation, which describes the dynamics of the
density matrix 3 ∂t% = L%, can be rewritten by splitting % into the two parts
% = (P + Q) %:

d

dt

(
P
Q

)
% =

(
P
Q

)
L
(
P
Q

)
%+

(
P
Q

)
L
(
Q
P

)
%. (2.7)

The second row is formally solved by

Q% = U†(t, t0)%(t0) +

t∫
t0

dt′U†(t, t′)QL′P%(t′) (2.8)

with U†(t, t′) := T←e
∫ t
t′ dsQL(s), where T← is the chronological time ordering4

operator. For the special case of a time independent L, this operator can be
simplified to U†(t′) = eQLt

′
.

Inserting this into the first row leads to the Nakajima-Zwanzig Equation:

∂tP% = PLP%+ PLU†(t, t′)Q%(t0)︸ ︷︷ ︸
=0

+PL
t∫

t0

dt′U†(t, t′)QL′P%(t′). (2.9)

The assumption that the inhomogeneous term disappears5, the short hand no-
tation for the integral kernel K (t, t′) = PLU†(t, t′)QL′P and the projector prop-
erty P2 = P are used to derive the final form of the Nakajima-Zwanzig Equa-
tion �

�
�
�∂tP% = PLP%+

t∫
t0

dt′K(t, t′)P%(t′). (2.10)

3For details cf. appendix (B.14).
4For details cf. [Breuer and Petruccione, 2002]
5This can be realized by assuming that at the start P% = %⇒ Q% = 0, which is sometimes

called factorizing initial condition.
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2.2.3 Interaction picture

In accordance to the assumption that the interaction between system and bath
is weak, a transformation is performed in this subsection, which corresponds to
the transformation to the interaction picture.6

The Liouvillian can be split into three parts7

L = (P +Q)L(P +Q) (2.11)

L = PLP︸ ︷︷ ︸
LS

+QLQ︸ ︷︷ ︸
LB

+PLQ+QLP︸ ︷︷ ︸
LI

(2.12)

L = LS + LB︸ ︷︷ ︸
L0

+λLI λ = 1 (2.13)

L = L0 + λLI (2.14)

The subscript reminds of the standard system bath approach, where HS is the
system path, which describes the system dynamics. In words of the projector-
approach, LS describes the dynamics in the relevant part. The bath part
corresponds to the irrelevant part LB . The interaction part LI describe the
interaction between relevant and irrelevant parts. This interaction part is as-
sumed to be small, which is indicated by the scalar parameter λ. Nevertheless,
this was derived without an explicit use of system or bath properties and is only
based on the definition of the projector.

With the help of PQ = 0, the following rules are simply derived

PLP = PL0P QLQ = QL0Q (2.15)

QLP = QLIP PLQ = PLIQ. (2.16)

This rules are useful to rewrite the Nakajima-Zwanzig Equation

∂tP% = PL0P%+

t∫
t0

dt′K(t, t′)P%(t′). (2.17)

The kernel K can be simplified to

K (t, t′) = PL
∞∑
k=0

T←
(
∫ t
t′
dsQL(s))k

k!
QL′P = PLQ

∞∑
k=0

T←
(
∫ t
t′
dsQL(s)Q)k

k!
QL′P

= PLIQ(QT←e
∫ t
t′ dsL0(s)︸ ︷︷ ︸
U†0 (t,t0)

Q︸︷︷︸
Q+0

) QL′IP︸ ︷︷ ︸
(Q+P)LIP

= PLIU†0 (t, t0)L′IP. (2.18)

Switching to the interaction picture via

%̃ := U†0 (t, t0)% L̃ = U†0 (t, t0)LU0(t, t0), (2.19)

6 Transformation to the interaction or Dirac picture is a default approach in scattering
theory (cf. appendix B.3.1).

7As well as the Hamiltonian ([Brandes, 2009, 3.120])
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leads to

∂t%̃ = (∂tU†0 (t, t0))%+ U†0 (t, t0)∂t%

∂tP%̃ = −PLU†0 (t, t0)%+ U†0 (t, t0)

PL0P%+

t∫
0

dt′K(t, t′)P%(t− t′)

 (2.20)

∂tP%̃ = U†0 (t, t0)

t∫
t0

dt′K(t, t′)PU0(t, t′)%̃(t′). (2.21)

The Nakajima-Zwanzig Equation can be simplified by assuming PL̃P = 0 to

dtP%̃ = λ2

∫ ′
K̃′P%̃′. (2.22)

K̃ becomes up to first order in t’ K̃ (t′, t) = PL̃L̃′P,

dtP%̃ = +λ2

∫ ′
PL̃L̃′P%̃′. (2.23)

2.2.4 Hilbert Space

In a former step the Hilbert Space is investigated and the projection operator
is explicitly defined.

The complete Hilbert Space 8 reads

H = HS ⊗ (
⊕
α

HB,α) (2.24)

HB,α =
⊕
Nα

SαH⊗Nα , (2.25)

where Sα is the operator that (anti) symmetrisizes the space. In our case we
only treat fermionic systems, so Sα = S. The commutativity of tensor and direct
product yields

H = HS ⊗
⊕
N

SH⊗N =
⊕
N

HS ⊗ SH⊗N , (2.26)

where N = (NL, NR, . . . ) is a vector, representing one combination of particles
quantities in the bath α. One can think of the setup of figure 2.2 (p. 11), where
α ∈ {R,L} represents the left or right bath. The default approach is to ’trace
out the bath part’. In the default manner all information about the bath, i.e.
the number of particles, is destroyed. Therefore in the present case, where the
number of particles is important, this information will be kept.

8Describing ’system and bath’ in words of system bath theory.
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Table 2.1: Comparison: n-resolved and default approach

default projection n-resolved projection

P ′% = TrB [%]⊗ %B P% =
⊕
N

Tr
(N)
B (%)⊗ %(N)

B

With Tr
(N)
B ( x ) =

∑ 〈Nα; kα1, . . . , kαN | x |Nα; kα1, . . . , kαN 〉 and the assump-

tion that the part %
(N)
B or %B is constant, the goal to retain the number of

particles can be archived. One can imagine that %
(N)
B , as the grand canonical

statistical operator for reservoir α, is

%
(N)
B =

⊕
α

e−βα(HB,α−µαNα)

TrB

[
e−βα(HB,α−µαNα)

] . (2.27)

But in the following the concrete representation of %
(N)
B is not needed. A com-

parison between the n-resolved and default approach projector can be seen in
table 2.1.

Partial trace

If one assumes unidirectional, sequential tunneling, the vector N only depends
on one scalar parameter, which is called n. The physical interpretation of n is
the number of particles, transported through the system. The partial trace over
the bath, a function, which sums over all possible bath vectors, can be split into
a sum of traces for every subspace.

Tr
(n)
B ( x ) ≡

∑
α

〈N(n, α)kα1, . . . , kαN | x |N(n, α); kα1, . . . , kαN 〉 (2.28)

If one regards Ṽ as a perturbation, it is self-evident that a perturbative expan-
sion makes sense.

%̃ = %̃0 + i

∫ ′ [
%̃0, Ṽ

′]
+O(Ṽ)2. (2.29)

Inserting the definition for the projector

P% =
⊕
n

Tr
(n)
B (%)⊗ %(n)

B (2.30)

with the short hand notation Tr
(n)
B (%) = %

(n)
S leads to�

�
�

∂tP%̃ = −

⊕
n

∫
Tr

(n)
B

([[⊕
n′

%̃′
(n′)
S ⊗ %(n′)

B , Ṽ
′
]
, Ṽ

])
⊗ %(n)

B +O(Ṽ)2.

(2.31)
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Investigating the system path of the density matrix leads to

∂tTr
(n)
B (P%̃) = −

⊕
n

∫ ′
Tr

(n)
B

([[⊕
n′

%̃′
(n′)
S ⊗ %(n′)

B , Ṽ
′
]
, Ṽ

])
⊗ Tr

(n)
B

(
%

(n)
B

)
︸ ︷︷ ︸

=1

+O(Ṽ)2.

(2.32)

In component notation, with ρ(n)(t) as the n-th entry of the direct sum, it leads
to

∂tρ̃
(n)
t = −

∫ ′
Tr

(n)
B

([[⊕
n′

%̃′
(n′)
S ⊗ %(n′)

B , Ṽ
′
]
, Ṽ

])
+O(Ṽ)2. (2.33)

The explicit expression for ρ(n)(t) reads

⊕
n

%
(n)
S ≡

ρ
(0)(t)
ρ(1)(t)

...

 . (2.34)

2.2.5 Formal solution

The expressiveness of (2.31) is quite low if no additional information on the
Interaction Hamiltonian V is given. Therefore one can use the Schmidt Decom-
position to express V in the style of [Brandes, 2007, 1.2.20]

V =
∑
k,n,α

Sk ⊗BN(n,α)
k (2.35)

and to collect terms with the same system part Sk

=
∑
m

Sl ⊗
∑
k,α,n

cl,k,n,αB
N(n,α)
k (2.36)

with Sl as an element of the system Hilbert space, B
N(k,α)
l as a part of the

bath Hilbert Space and cl,k,n,α as scalar parameters from the system part. This
notation underlines that interactions with more than one bath Hilbert Space
(HBα,1 ⊗HBα,2) are not regarded.

Formally the expression Tr
(n)
B

([[
P%̃′, Ṽ

′]
, Ṽ
])

can be rewritten as

Tr
(n)
B

([[
P%̃′, Ṽ

′]
, Ṽ
])

=
∑
n′,l′,l

γ(t, t′, n, n′, l′, l).
[[
ρ(n′)(t′), Sl′

]
, Sl

]
, (2.37)

where γ(t, t′, n, n′, l′, l) is said to be a four component vector, which is multiplied
with the four components of the double commutator.

With the Markov Assumption (see below) the memory of this equation is dropped
and the nQME becomes�

�
�

∂tρ

(n)(t) = Lsρ(n)(t)−
∑
n′,l′,l

Γ(n′, l′, l) .
[[
ρ(n′)(t), Sl′

]
, Sl

]
. (2.38)
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2.2.6 Bath correlation functions

The form of equation (2.38) is still general. Especially Γ(n′, l′, l) is not a very
useful vector, because it involves all bath information. The next subsection
explains how the bath information is reduced by using bath correlation functions
[Gardiner et al., 1986]. In the n-independent case the bath correlation functions
of the bath can be introduced in the following form9:

Ck,k′(t, t
′) = TrB

[
B̃′k′B̃k%B,0

]
. (2.39)

On a more atomic level for fermions this reads

TrB

[
b†k′bk%B,0

]
= δk,k′fk(εk). (2.40)

The same applies to cyclic permutations, respectively TrB

[
bkb†k%

(N ′)
B,0

]
= δk,k′(1−

fk(εk)) for odd numbers of permutations. fk denotes the Fermi Functions. In
the n-dependent case it works slightly different, because the creation and an-
hilation operators bk,b

†
k change the number of particles in the bath, which is

connected to a different bath density matrix.

Explicitly spoken this means that

Tr
(N)
B

(
b†k′bk%

(N ′)
B,0

(N ′)
)

=Tr
(N)
B

(
%

(N ′)
B,0

(N ′)b†k′bk

)
= δk,k′δN,N ′fk(εk) (2.41)

does not change the particle number, but

Tr
(N)
B

(
bk%

(N ′)
B,0

(N ′)b†k′
)

= δk,k′δN,N ′+1fk(εk) (2.42)

involves a change in N’.

Tr
(N)
B

(
bkb†k%

(N ′)
B,0

(N ′)
)

= Tr
(N)
B

(
%

(N ′)
B,0

(N ′)bkb†k

)
= δk,k′δN,N ′(1− fk(εk))

(2.43)

Tr
(N)
B

(
b†k%

(N ′)
B,0

(N ′)bk′
)

= δk,k′δN,N ′−1(1− fk(εk)).

(2.44)

is analogically computed. As this is an useful result for calculating γ(t, t′, n, n′, l′, l),
the result will be summed up (see table 2.2, p. 22).

9%B,0 = R0 [Brandes, 2007]
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2.3 Assumptions and limits

To receive explicit solvable results and produce simple solutions some assump-
tions are useful. The important assumptions and approximations are

• Born-Markov Approximation

• Limitation to two bath reservoirs

• Unidirectional tunneling

• Sequential tunneling limit

• Infinite bias limit

2.3.1 Born-Markov Approximation

The Born-Markov Approximation is a serious restriction. Thereby, it is assumed
that there are no memory effects in the system. This reminds to Hamilton
mechanics, where a state in the phase-space had specified the complete system
dynamics. In (2.31) the system state depends on the complete history. This fact

is expressed by
∫ ′

, which stands for
t∫

0

dt′. In the Born-Markov Approximation

it is assumed that the integral kernel is strongly peaked around t − t′ ≈ 0.
Roughly spoken that means that events, which happened longer time ago, are
increasingly forgotten by the system.

Strongly peaked means that the width of the peak δ(t − t′) � τ , where τ
is the inverse of the rate of change of ρ̃(t). This restriction has to be kept in
mind with regard to numerical simulation, using the discrete time step approach,
introduced in chapter 7. That means that one can replace %̃′ ≡ %̃(t′)→ %̃ ≡ %̃(t),
respectively %(t′)→ %(t). For (2.17) this reads

∂tP% =

PL0 +

t∫
t0

K(t, t′)dt′

P%. (2.45)

As the difference between (2.17) and (2.45) is only one apostrophe, it could
be misunderstood as no big change. This is a misapprehension, as (2.17) is a
complex integro-differential equation, while (2.45) is a kind of simple first order
differential equation. The explicit form of (2.31), after back- transformation
into the Schrödinger picture, becomes

∂tP% =

PL0 +

t∫
t0

PL̃I(t− t′)LIdt′
P% (2.46)
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or, with expanded double commutator,�
�

�

∂tP%(t) = PL0P%(t)−

⊕
n

∫ t

0

dt′Tr
(n)
B

([[
P%(t), Ṽ(t− t′)

]
,V
])
⊗ %(n)

B .

(2.47)

It has to be pointed out that only single particle actions were taken into account.
This was assumed by the approximation of the integral Kernel K up to the first
order, which ended in a Quantum Master Equation for ∂tP% of second order.

This means that the change of |n − n′| is at maximum 1 within each jump
[Bagrets and Nazarov, 2003, Nazarov, 1993, Stoof and Nazarov, 1996].

2.3.2 Explicit calculation

In the following section the calculation will be explicitly done. As it involves 16
terms, the calculation is quite long. Therefore in this thesis only some exemplary
terms where noted. Nevertheless it might be helpful to compare this section to
[Brandes, 2007] or [Pöltl, 2008], where more expressions are described.

Explicitly the Hamiltonian H = HS + HB + HS,B consists of three parts.

HS = εss
†s, (2.48)

is the system part of the Hamiltionan in Eigenbasis

HB =
∑
k,α

εb,k,αb†k,αbk,α. (2.49)

HB is the bath part of the Hamiltonian. The index with α ∈ {R,L} indicates
the left or right lead and k labels the channel-index of the bath, where jumps
into our out of the system, might occur. And there is the most important part,
the interaction part

V = HS,B =
∑
k,α,n

(
Tk,α,nb†k,αs + T ∗k,α,ns†bk,α

)
. (2.50)

This interaction part can be rewritten with regard to the splitting, proposed in
(2.36)

V = HS,B = sB† + s†B, B =
∑
k,α,n

T ∗k,α,nbk,α. (2.51)

As stated above, there are no processes, which interact with the right and the

left lead at the same time. In the next section Tr
(n)
B

([[
P%(t), Ṽ(t− t′)

]
,V
])

will be obtained and the time integration will be executed afterwards.
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Right lead α = R

To get rid of the alpha index we first investigate the right side and keep the
R index in mind. This makes the text more readable. The trace on the right
hand, applied on some object x , becomes

Tr
(N)
B ( x ) =

∑
k1,k2,...kN

〈N ; k1, k2 . . . kN | x |N ; k1, k2 . . . kN 〉 ≡
∑
k

〈N ; k| x |N ; k〉 .

(2.52)

In the interaction picture, Ṽ reads

Ṽ(Υ) =
(
e−iΥεssB̄† + eiΥεss†B̄

)
, B̄ =

∑
k̄,N̄

e−iΥεk̄T ∗k̄,N̄bk̄. (2.53)

One can think of Υ = t − t′. Inserting this in Tr
(N)
B

([[
P%(t), Ṽ(t− t′)

]
,V
])

leads to10

Tr
(N”)
B

([[
%

(N ′)
B , B̄†

]
,B
]
.
[[
%

(N ′)
S , e−iΥεS s

]
, s†
])

+ h.c., (2.54)

where . is a special notation for the scalar product of the four components of the
double commutator and h.c. stands for the hermitan conjugate, which means

that the † are switched. Inserting the definition for B and Tr
(N)
B () leads to∑

k′′,k̄,k,N ′,N̄,N

〈N ′′; k′′| .eiΥεk̄Tk̄,N̄T ∗k,N
[[
%

(N ′)
B ,b†

k̄

]
,bk

]
.
[[
%

(N ′)
S , e−iΥεS s

]
, s†
]
|N ′′; k′′〉

(2.55)

for the first part. With N ′′ → N this expression can be rewritten to∑
k

eiΥ(εk−εS)|Tk,N ′ |2Tr
(N)
B

([[
%

(N ′)
B ,b†k

]
,bk

])
.
[[
%

(N ′)
S , s

]
, s†
]
.

(2.56)

As seen in 2.2.6, the Fermi Function always leads to a δk̄, k. This is a consider-

able achievement, because the values for Tr
(N)
B

([[
%

(N ′)
B ,b†k

]
,bk

])
are known

and listed in table 2.2.

10N was changed to N” to avoid a mixing of the indices.
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Table 2.2: Correlation functions

NO. sign Tr
(N)
B ( x ) f(εk) N system

1 + %
(N ′)
B,0 b†kbk f(εk) N ′ → N ρ(N)(t)ss†

2,7 - bk%
(N ′)
B,0 b†k f(εk) N ′ → N − 1 s†ρ(N−1)(t)s

3,6 - b†k%
(N ′)
B,0 bk 1− f(εk) N ′ → N + 1 sρ(N+1)(t)s†

4 + bkb†k%
(N ′)
B,0 1− f(εk) N ′ → N s†sρ(N)(t)

5 + %
(N ′)
B,0 bkb†k 1− f(εk) N ′ → N ρ(N)(t)s†s

8 + b†kbk%
(N ′)
B,0 f(εk) N ′ → N ss†ρ(N)(t)

Formally an expression for the right part or γ can be written down. The ac-
complishment will be skipped and further simplifications are proceed.

The investigation of the term∑
k

eiΥεk |Tk,N ′ |2=

∫ ∞
−∞

∑
k

|Tk,N ′ |2eiΥεδ(ε− εk) (2.57)

reminds to the following property. The delta-distribution can be written as the
Inverse Fourier Transformation of its Fourier Transformation

δ(x) =
1

2π

∞∫
−∞

dyeixy. (2.58)

With the help of (2.58) and the definition

Γ(N ′) = 2π
∑
k

|Tk,N ′ |2δ(ε− εk), (2.59)

under the assumption that Γ(N ′) is independent from ε, the sum is rewritten to∑
k

eiΥεk |Tk,N ′ |2= δ(Υ)Γ(N ′). (2.60)

In the consequence, the time integration of the kernel is simple. Thinking about
the delta-distribution, as limit of a series without skewness (for example the
Uniform Distribution), it is comprehensible that

t∫
0

f(t′)δ(t− t′)dt′ =
f(t)

2
. (2.61)
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Thus the four investigated terms become

Γ(N ′)

2
Tr

(N)
B

([[
%

(N ′)
B ,b†k

]
,bk

])
.
[[
%

(N ′)
S , s

]
, s†
]
. (2.62)

A help for evaluating the double commutator can be given by the following rule

[[
a∓,b

±], c] =
[[
c,b±

]
, a∓

]
≡ab†c− acb† − b†ca + cb†a

+a†bc− a†cb− bca† + c,ba†, (2.63)

which gives the full expression for the right lead.

Left lead α = L works exactly equal to the right lead.

2.3.3 Infinite bias limit

In the infinite bias limit, the bias on the right side becomes∞. According to that
the Fermi Function gets 1 or 0. That means that half of the terms disappears.
With the conversion NL(n), NR(n) the Liouville-von Neumann Equation reads�

�

�

�
∂tρ

(n)(t) = LSρ(n)(t) +
Γ

(n)
R

2
{ρ(n)(t), ss†} − Γ

(n−1)
R s†ρ(n−1)(t)s

+
Γ

(n)
L

2
{ρ(n)(t), ss†} − Γ

(n)
L s†ρ(n)(t)s. (2.64)

At last the some steps for the jump part are summarized:

· · · =
∑
k

〈NR; k|
∑

n′′,n′′′,k′′,k′′′

T ∗k′′Rn′′Tk′′′Rn′′′s
†bk′′R

⊕
n′

%̃′
(n′)
S ⊗ %(n′)

B sb†k′′′R |k;NR〉

(2.65)

=
∑
kn′

〈NR; k|
∑

n′′,n′′′,k′′,k′′′

T ∗k′′Rn′′Tk′′′Rn′′′bk′′R%
(n′)
B b†k′′′R |k;NR〉 ⊗ s†%̃′

(n′)
S s

(2.66)

=
∑
n′k

T ∗kRn′TkRn′ 〈NR; k|bkR%(n′)
B b†kR |k;NR〉 ⊗ s†%̃′

(n′)
S s (2.67)

=
∑
n′k

T ∗kRn′TkRn′fR(εRk)δ(NR, NR(n′ − 1))e...s†%̃′
(n′)
S s (2.68)

=
∑
k

T ∗kRn−1TkRn−1fR(εRk)e...s†%̃′
(n−1)
S s (2.69)

. . .

=Γ
(n−1)
R s†ρ(n−1)s (2.70)





Chapter 3

n-dependent Master
Equation: Discussion

In the former chapter the n-dependent n-resolved Quantum Master Equation
(nQME) was derived. This derivation includes some assumptions, which strongly
restrict the field of application.

To extend the field of applications the nQME is formally defined in section 3.1.
This general specification can be easily extended to other, even non physical,
problems.

In section 3.2 the different forms and representations of the nQME and the
transformations between them are explained.

In section 3.3 the Full Counting Statistics is explained that can be derived from
the nQME. The two possibilities, regarding either the occupations P (n)(t) or
the moments, are discussed. Furthermore the connection between moments and
cumulants, as well as their forms in time and Laplace Space, are described. In
addition to that current and Fano factor are introduced.

Finally in 3.4 the long-time limit of current, Fano factor and higher cumulants
are explained.

25
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3.1 Formal definition

In the style of [Brandes, 2010] the following setting is defined:

Definition 1 (Conditioned Density Operator) ρ(n)(t) is the reduced sys-
tem density operator for a system that n electrons have passed in the time frame
from 0 to t.

At this point it might be appropriate to remark that this operator is a vec-
tor with d-real components in the superoperator formalism (see appendix B.3,
p.138). In this case d is not necessary the square of the system dimensions,
because some components might be neglected, as they are zero due to physical
reality.

Furthermore it is always possible to represent complex entries of the density
matrix with a base change with real numbers in the superoperator (vector).
Examples can be seen in chapter 5, where the representation is discussed for the
single (d = 2) and the Double Quantum Dot (d = 5).

From this setting it follows obviously that negative particle numbers or times
do not occur.

This can be formulated as

Proposition 1 t < 0 ∨ n < 0⇒ ρ(n)(t) = 0.

Furthermore we call the

Definition 2 (Total initial Density Operator) ρ0, which is said to be the
total system density operator ρ at t = 0.

In contrast to the conditioned density operator, the total system operator obeys
the condition ’trace class = 1’ (see appendix B.7, p.134).

Therefore the initial condition for the conditioned density operator reads

Proposition 2 t = 0⇒ ρ(n)(t) = δn,0ρ0.

Due to the relationship ρ ≡∑∞n=0 ρ
(n)(t), arises

Proposition 3 t > 0⇒∑∞
n=0 Trρ(n)(t) = 1.

It is assumed that ρ(n)(t) is compatible with

Equation 1 (nQME1 in nt-representation)

∂tρ
(n)(t) = L(n)

0 ρ(n)(t) + J n−1ρ
(n−1)(t). (3.1)

This equation looks similar to the usual n-resolved QME [Gurvitz and Prager,
1996]. The difference is the dependence of the jump and nojump superoperator
on the number of transmitted particles n.
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Definition 3 (jump superoperator) J (n) can be represented as d×d-matrix2.
It describes processes, wherein particles leave the system and in this manner in-
crease the number n.

In almost the same manner

Definition 4 (nojump superoperator) L(n)
0 can be expressed as d×d-matrix.

L(n)
0 is the rest of the Liouvillian (L), which describes processes, where the

particles remain in a state with same n.

Remark: L(n)
0 describes processes, where particles jump into the system and as

well in internal system dynamics. This interpretation is also compatible with
the agreement made in chapter 2, where the jump out process (on the right
side) was drawn to change n (compare figure 2.1).

3.2 Forms and representations

Attentive readers might have asked themselves what ’nt-representation’ in def-
inition (3.1) stands for.

The following section gives a complete answer to that question. First of all the
aim of the different forms of the representations are motivated.

The first glance at the nQME detects an differential equation. Usually an equa-
tion for ρ(n)(t) is preferred to a differential equation for ∂tρ

(n)(t). Due to that,
the Laplace Transformation is eye-catching, which turns the derivative into a
multiplication.

In figure 3.1 this is described by the LT
t→z

-arrow from the upper left to the

upper right corner. The reason for choosing this way will be explained later
on. Alternatively one could have make use of the recursive character of the
nQME. This character can be easily discovered by investigating ρ(0)(t) . If
one regards proposition 1, it becomes clear that ρ(−1)(t) is 0. This implies

that ρ(0)(t) = eL
(0)
0 tρ0.3 This result can be inserted in the differential equation

for ρ(1)(t) and recursive continued. Apart from that, it might be a hard job
to calculate the average current (and higher current cumulants) as stated in
the introduction. The average current is well known as ∂tQ(t) [Thomsen and
Gumlich, 2008] or in other words e−∂t〈N〉, where e− = 1 is the elementary
charge, which one gets in our unit system.4 In our case 〈N〉 = TrNρ can be
simplified to

∑∞
n=0 nTrρ(n)(t) by inserting the conditioned density matrix, where

Nρ(n)(t) ≡ n. As this infinite sum is hard to handle, the counting field variable
χ is introduced by a Fourier Sequence Transform (FST

n→χ
).

2To express the n-resolved jump operator for all n explicit, one would receive a tensor
of order 3. Due to the finite system dimension this tensor could be flatted to a matrix.
Nevertheless, this becomes only relevant within the vector notation approach (see appendix
C.2.1, p. 143), whereon no further investigations were made in the context of this thesis.

3L(n)
0 is time independent in our case, so the time order operator and the integral in the

exponent disappear.
4An exciting discussion about units can be found in [Wilczek, 2007].
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Subsequently the moments and cumulants can be derived. The derivation
according to the counting variable was already explained in section 3.3 and
many other publications concerning Full Counting Statistics [Schaller et al.,
2009, Kambly et al., 2010, Flindt et al., 2010a]. The paper of [Belzig, 2005] for
example is a adjuvant overview.

To refer to figure 3.1 this action is expressed by the FST
n→χ

-arrows from the top

to the bottom.

∂tρ
(n)(t) = L(n)

0 ρ(n)(t) + J n−1ρ
(n−1)(t)

LT
t→z−−−−→ ρ̂n(z) = P̂n(z)Ŵ(n−1)

π,0 (z)ρ0

FST
n→χ

y FST
n→χ

y
∂tρχ(t) = ∂t

∞∑
n=0

ρ(n)(t)einχ = ∂t (Pχ(t) ∗ Gχ(t)ρ0)
LT
z→t

−1

←−−−−−− ρ̂χ(z) = P̂χ(z)Ĝχ(z)ρ0

Figure 3.1: Overview: Forms of the Quantum Master Equation
*: convolution integral
LT
t→z

: Laplace Transformation

FST
n→χ

: Fourier Sequence Transformation

In the following the transformation between the forms are explained in detail:

Step 1: Laplace Transformation from time to z-domain (LT
t→z

)

The Laplace transformed density matrix is defined as

ρ̂n(z) := LT
t→z

ρ(n)(t) =

∫ ∞
0

e−ztρ(n)(t) dt, z ∈ C. (3.2)

Applying the Laplace Transformation (LT
t→z

) to equation (3.1) yields

zρ̂n(z)− ρn(t=0) = L(n)
0 ρ̂n(z) + J (n−1)ρ̂n−1(z) (3.3)

(z − L(n)
0 )ρ̂n(z) = J (n−1)ρ̂n−1(z) + ρn(t=0). (3.4)

In this connection ρn(t=0) is the vector, when counting is started.

We write ρn(t=0) =: δn,0ρ0 and define the propagator5. P̂n(z) =
(
z − L(n)

0

)−1

.

Inserting this definition into the former equation leads to

ρ̂n(z) = P̂n(z)
(
J (n−1)ρ̂n−1(z) + δn,0ρ0

)
. (3.5)

This is a recursive relationship for ρ̂n(z)

ρ̂0(z) = P̂0(z)ρ0

ρ̂n(z) = P̂n(z)J (n−1)ρ̂n−1(z). (3.6)

5Mathematically seen, this is the resolvent of L(n)
0 . Compare also [Emary, 2009]
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The next step is to get an explicit formula for (3.6). It can be expanded to

ρ̂n(z) = P̂n(z)J (n−1) . . .J (1)P̂1(z)J (0)P̂0(z)ρ0. (3.7)

By using the short hand notation

Ŵn(z) := J (n)P̂n(z) =
J (n)

z − L(n)
0

(3.8)

Ŵ(n−1)

π,0 (z) :=
0∏

k=n−1

Ŵk(z) = . . . Ŵ2(z)Ŵ1(z)Ŵ0(z), (3.9)

ρ̂n(z) can be expressed as6 7�



�
	ρ̂n(z) = P̂n(z)Ŵ(n−1)

π,0 (z)ρ0. (3.10)

Step 2: Fourier Sequence Transformation from particle number to
the counting field (FST

n→χ
)

Defining 8

ρ̂χ(z) =
∞∑
n=0

ρ̂n(z)einχ =

( ∞∑
n=0

einχP̂n(z)Ŵ(n−1)

π,0 (z)

)
ρ0. (3.11)

This equation is quite abstract. Therefore, the first terms are explicitly written
down (read from right to left).

ρ̂χ(z) = . . . eiχŴ2(z) + P̂2(z)
)
eiχŴ1(z) + P̂1(z)

)
eiχŴ0(z) + P̂0(z)

)
ρ0

(3.12)

If there is no additional information about Ŵn(z) = J (n)

z−L(n)
0

, it seems as there

was no general expression for that sum. In forecast to the clean limit and the
general case discussed in [Flindt et al., 2008], the formal short hand notation

P̂χ(z)Ĝχ(z) ≡
( ∞∑
n=0

einχP̂n(z)Ŵ(n−1)

π,0 (z)

)
(3.13)

is introduced and (3.11) reads�� ��ρ̂χ(z) = P̂χ(z)Ĝχ(z)ρ0. (3.14)

The difference between this notation and the notation, used in

[Flindt et al., 2008]: ρ̂(χ, z) = Ĝ(χ, z)ρ̂(χ, t = 0), (3.15)

6Notation advice: An empty product
∏

= 1 and an empty sum
∑

= 0.
7If one does not like the definition with the Ŵ(n−1)

π,0 (z) superoperator, one can keep the
explicit formulation of equation (3.7) in mind.

8Notation advice: From now on χ is the counting field variable. This is independent from
the total system matrix.
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is that in our case the superoperator Ŵ depends explicit on n and not on n−n′.
This becomes relevant in chapter 7, where the impurity case is discussed.

For now, we investigate the known case, where the jump operator does not
depend on n. From now on this case is called clean case.

The same procedure is applied to random tunneling rates in part II. The special
case of the simulated Single Quantum Dot is taken into account in chapter 8,
where the simplification of P̂χ(z)Ĝχ(z) is slightly different from the procedure
for the clean case. The results for n-independent Liouvillian and jump operator,
e.g. independent rates Γn = Γ, have already been discussed in the previous
chapters of this thesis. For comparison we reference back to these results and
mark these sections with clean limit or clean case.

n-independent nojump operator (L0)

To demonstrate how to calculate with the introduced superoperators, this step
was inserted on the way to the clean case. Nevertheless this should be seen
as mathematical example, for which no common physical realization exists. 9

Assuming that the Liovillian is constant L(n)
0 = L0 and the jump operator J (n)

stays n-dependent, leads to a constant propagator P̂(z) = P̂n(z).

Equation (3.11) gets simplified to

ρ̂χ(z) = P̂(z)

( ∞∑
n=0

einχŴ(n−1)

π,0 (z)

)
ρ0. (3.16)

As above the short hand notation

Ĝχ(z) =

( ∞∑
n=0

einχŴ(n−1)

π,0 (z)

)
(3.17)

is used and (3.11) reads

ρ̂χ(z) = P̂(z)Ĝχ(z)ρ0. (3.18)

Clean limit

For the case of the additional restriction of a constant jump operator J = J (n),

it is eye-catching that Ŵn(z) = Ŵ (z). Ŵ(n−1)

π,0 (z) simplifies to Ŵ(n−1)

π,0 (z) =

Ŵn(z). Thus, ρ̂n(z) (3.10) becomes

ρ̂n(z) = P̂(z)Ŵn(z)ρ0 = M̂n(z)P̂(z)ρ0. (3.19)

9 The difficulty is to construct a jump operator, where the entries in the columns sum up
to 0. An imaginable process would be a system with two or more targets (on the right side).
One possible jump process would be the following case: The electron is in a state, in which
it is clear, that it leaves the system in the next step. The degree of freedom is limited to the
targets, the electron jumps to. This rate could be n-dependent and would not affect the claim
that the sum over the column entries has to be 0.



3.2. FORMS AND REPRESENTATIONS 31

As it was implied by (3.12), Ĝχ(z) becomes a geometric sequence 10, where the

limit is known as Ĝχ(z) =
(

1− Ŵ(z)eiχ
)−1

. Thus, equation (3.14) can be

expanded to �
�

�

ρ̂χ(z) = P̂(z)

1

1− Ŵ (z)eiχ
ρ0. (3.20)

For comparison we define M̂(z) := P̂(z)J , which allows to rewrite the former
equation to

ρ̂χ(z) =
1

1− M̂(z)eiχ
P̂(z)ρ0. (3.21)

With the definition ρ̂0(z) := P̂(z)ρ0 we get

ρ̂χ(z) =
(

1− eiχM̂(z)
)−1

ρ̂0(z). (3.22)

This is very similar to (3.15), which was expected for the clean case.

Admittedly this is a more descriptively form. However it is not ’compatible’ to
the n-dependent case, as rates of order n and n−1 would be mixed in that case.

Alternative way*

An alternative is to use the other way round in the diagram 3.1. The counting

field in the time domain is defined as expected as ρχ(t) =
∑∞
n=0 ρ

(n)(t)einχ.
This way was used by [Flindt, 2007] and is adopted in chapter 7. It can be
stated that both ways lead to the same result

ρχ(t) = FST
n→χ

ρ(n)(t) = LT
z→t
−1FST

n→χ
LT
t→z

ρ(n)(t). (3.23)

Formally that means that one has to prof the Commutativity of diagram

3.1. Therefore, it is sufficient to show that

[
FST
n→χ

, LT
t→z

]
ρ(n)(t) = 0. This can be

mathematically shown in the following way. In our formalism ρ(n)(t) is a vec-
tor, which depends on the variable t. Writing this vector as ρ(n, t) 6= ρ(n(t), t)
shows that the variables n and t are independent and can be transformed inde-
pendently.

10(1 + x(1 + x(1 + x(1 + . . . )))) with x = eIχŴ (z)

http://en.wikipedia.org/wiki/Geometric_progression
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3.3 Statistical quantities

In this section it will be discussed how the relevant information of the nQME
are filtered out. In general there are two strongly related approaches. On
the one hand one could directly take a visual look to the occupation of the
system by printing a histogram, which specifies the probability distribution that
indicates how many particles have passed a system after a certain time. This
representation does not necessarily provide clear statements. But it is always
possible to get the probability distribution with a numeric simulation. The
connection between density matrix and occupation approach is discussed in
the first subsection. The possibility to create of an histogram with a numeric
simulation stands in connection with a large computational effort.

On the other hand the methods of descriptive statistics can be used, where one
describes the histogram with a view variables that specify its outlook. The
advantage of this approach is that the information, gained by this proceeding,
classifies the system and produces well-defined results.
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n
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0.10
0.15
0.20
0.25
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Pn
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n
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n
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distrib. binomial (discrete) Rayleigh chi squared

PDF P (x) =
(
n
x

)
px(1− p)n−x f(x) = x

σ2 e
−x2/2σ2

f(x) = e−x/22−σ/2x
σ
2
−1

Γ(σ2 )
param. n = 20, p = .5 σ = 5 σ = 5

mom.
cum.
aam.

5. 27.5 162.5 1017.5
5. 2.5 0. −1.25
5. 2.5 0. 2.8

6.27 50. 470. 5000.
6.27 10.73 22.18 28.22
6.27 10.73 0.631 3.245

5. 35. 315. 3465.
5. 10. 40. 240.
5. 10. 1.26 5.4

Figure 3.2: Three exemplary Probability-Density-Functions (PDF) and normed his-
tograms for 20 events of certain distributions. In the table details for the
distributions are given. The values were calculated with a simple Math-
ematica Program and only give an imagination of the gathering of image
and parameter. The following abbreviations are used.
distrib.:name of the distribution
param.:parameter used for the PDF- and histogram-plot
mom.: moments 1 to 4
cum.: cumulants 1 to 4
nam.: named forms 1 = mean, 2 = variance, 3 = skewness, 4 = kurtosis
(from left to the right)
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There are three equal ways of description in means of descriptive statistics.

Moments can be simply derived from the nQME, but are not very intuitive.

Cumulants can be derived directly from the moments and are more intuitive.

Named forms exist for the first crucial parameters

(mean, variance, skewness, kurtosis).

The disadvantage of this approach is that there are only few systems, where
these values can be derived analytically. However, even if the values come
from a numerical evaluated histogram (first approach), it leads to comparable
data. In figure 3.2 this is visualized for some distribution, which are chosen
independently from physical models. In the following section the situation is
explained, where the density ρ̂χ(z) matrix is known as a function of the counting
field. For arbitrary n-dependence of the QME this is not the case. In that case
this technique would not be applicable and a way to derive mn(t) directly from
ρ(n)(t) would have to be found. However, there is a wide range of cases (clean
case, random case (part II), simulated Single Quantum Dot (see chapter 8)),
where this technique can be used.

The way from the density matrix ρ̂χ(z) to the long-time cumulants is visualized
in figure 3.3 and will be explained in the following two sections.

ρ̂χ(z)
Tr−→ M̂(iχ)

∂niχ,χ→0

−−−−−→ m̂n(z)
LT
z→t

−1

−−−−→ mn(t)

∑
(nk)−−−−→ cn(t)

t→∞−−−→ cn,∞

Q
z=0

y cn,∞
c1,∞

−→ 〈I∞〉, 〈F∞〉 . . .

m̃n(z)
LT
z→t

−1

−−−−→ m̄n(t)

∑
(nk)−−−−→ c̄n(t)

t→∞−−−→ cn,∞

Figure 3.3: Overview: From Density matrix to statistical quantities
This scheme illustrates how the cumulants can be calculated. The values
on the bottom are approximated. In the long-time limit this should lead
to the same results as the exact calculation for the current (〈I∞〉) Fano-
factor (〈F∞〉)
LT: Laplace Transformation
FST: Fourier Sequence Transformation
Q
z=0

: Taylor Series

The overall concept to derive the cumulants (in time space) from the moments
in Laplace Space is the following:

1. to calculate the moments m̂k(z) in Laplace Space
2. to do Inverse Laplace Transform of m̂k(z) written as mk(t)

3. to calculate the cumulants cn = mn(t)−∑n−1
k=1

(
n−1
k−1

)
ckmn−k(t)

4. to normalize cn to c1
After that it is possible to derive the long-time limit.
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At this point it has to be remarked that this procedure was detailedly discussed
by many authors [Flindt et al., 2010a, Belzig, 2005]. Especially the way taken
by [Flindt et al., 2010b] is quite similar to the approach in this thesis.

3.3.1 Occupation

The object we are interested in, are not the density matrices themselves, but
the sum of the probability of the occupation. For example, the probability
distribution concerning the number of transmitted particles at a specific time,
is in focus of interest. Examples can be seen in part III, e.g. in figure 9.3.

The connection between probability and density operator is given by

P = Trρ (3.24)

in the not n-resolved case P = 1. In the n-resolved case we achieve

1 =
∑
n

Pn. (3.25)

For Pχ =
∑
n Pne

inχ,

Pχ=0 = 1. (3.26)

P might depend on t or z what is not explicitly marked. In the z-dependent
case

P̂ := P̂(z) = LT
t→z

P(t).

3.3.2 Moments

From the mathematical point of view k’th moment (of the occupation probabil-
ity) in Laplace Space has to be defined as

m̂k(z) := lim
χ→0

∂kχM̂(χ) moment, (3.27)

whereby M̂(iχ) is the Moment Generating Function (MFG). For a single

random variable X this function is defined by MX(iχ) =
〈
eiχX

〉
[Ming-Kuei,

1962, Weisstein, ], in accordance to our definition of the

Moment Generating Function
�� ��M̂(iχ) = P̂(χ) = TrP̂Ĝχ(z). (3.28)

That leads to the same result as in [Emary, 2009, 9.22]. Explicitly spoken the
Inverse Laplace Transformation yields

LT
z→t
−1P̂(χ) =

∑
n

Pn(t)einχ = M(χ). (3.29)
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Computation power

To calculate the moments explicitly we have to compute the derivatives of the
Moment Generating Function. The common way is to calculate the Moment
Generating Function for a specific given problem and derive the moments hence-
forward. But it is also possible to derive the moments in general. The advantage
within this approach is that one only has to calculate the powers of matrices
instead of derivatives. Through that the computational effort decreases. To give
an example: For the Double Quantum Dot, the Moment Generating Function
approach needs more than 64 seconds to calculate the Fano factor (definition
see below) with random tunneling rates. The matrix approach consumes less
than 2 seconds.11

General formula for moments

In this section the general way is discussed. Therefore theorem 12 (p. 132) is
useful.

The application of this theorem with Ĝχ(z) = 1

1−Ŵ(z)eiχ
(↔ A−1) leads to

∂χĜχ(z) = −Ĝχ(z).∂χ(1− Ŵ(z)eiχ).Ĝχ(z) (3.30)

= ieiχĜχ(z).Ŵ(z).Ĝχ(z). (3.31)

The i factor vanishes if one regards the definition of the moment (3.27) (obvi-
ously ∂kiχ = 1

ik ∂
k
χ). This means for the first moment m̂1(z)

m̂1(z) = − iTrP̂(z).∂χĜχ(z).ρ0

∣∣∣
χ→0

= TrP̂(z).Ĝχ(z).eiχŴ(z).Ĝχ(z).ρ0

∣∣∣
χ→0

= TrP̂(z).(1− Ŵ(z))
−1
.Ŵ(z).(1− Ŵ(z))

−1
ρ0 (3.32)

= TrP̂(z)Ĝ0(z)Ŵ (z)Ĝ0(z)ρ0 (3.33)

with Ĝ0(z) = (1− Ŵ(z))−1. The higher moment can be calculated in the same
procedure.

The second and third moment read

m̂2(z) = TrP̂(z)Ĝ0(z)
(
Ŵ (z)Ĝ0(z) + 2(Ŵ (z)Ĝ0(z))2

)
ρ0 (3.34)

m̂3(z) = TrP̂(z)Ĝ0(z)
(
Ŵ (z)Ĝ0(z) + 6(Ŵ (z)Ĝ0(z))2 + 6(Ŵ (z)Ĝ0(z))3

)
ρ0.

(3.35)

For the exact calculation and derivation refer to appendix C.1, p. 141.

11This is the time needed by the analytical Mathematica Program. A numerical algorithm,
e.g. written in C using LaPack, is expected to be much faster.
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The general expression for the m’th moment reads�
�

�

m̂m(z) = TrP̂(z)Ĝ0(z)

(
m∑
k=1

c(m, k)(Ŵ (z)Ĝ0(z))m

)
ρ0. (3.36)

c(m, k) is a numeric coefficient that can be calculated numerically in a very
short time.

c(m, k) =k! c̃(m− k + 1, k) (3.37)

with c̃(s, k) =

{∑k
i=1 ic̃(s− 1, i) s > 1

1 else
(3.38)

This recursive property was also investigated in [Flindt et al., 2010a] with a
different notation explained in [Flindt et al., 2005, Flindt et al., 2004].

Inverse Laplace Transformation

The next step is the Inverse Laplace Transformation LT
z→t
−1 of the moments

m̂n(z). Unfortunately, there are many cases, where this Inverse transformation
cannot be calculated analytically. Nevertheless, the key interest is only the
long-time limit for the moments, cumulants etc. Therefore the difficulties of
the Inverse Laplace Transformation can be avoided by a series approximation.
Thus, one makes a series development around the point z = 0 (denoted as Q

z=0
),

the moments up to the order of O(z0). This is sufficient, if the long-time limit
is in focus of interest. In terms of diagram 3.3 that means that one would take
the lower path. The following notation is used

m̃n(z) =
∑
b

abz
−b +O(z)0 ≈ m̂n(z). (3.39)

This function only depends on terms of the form az−b, where the Inverse Laplace
Transformation is known as LT

z→t
−1az−b = a

(b−1)! t
b−1. At this point it becomes

obvious that higher order terms vanish in the long-time limit. For details cf.
proposition 8 (p. 130). The moments in time space are called mn(t) and the
series approximation is denoted with m̄n(t).
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3.3.3 Cumulants

Afterwards it is straight forward to derive the cumulants. The relationship
between moments and cumulants is given by

cn(t) := mn(t)−
n−1∑
k=1

(
n− 1

k − 1

)
ck(t)mn−k(t). (3.40)

A special case of this formula is the displacement law (theorem 5). The
approximated cumulants, which are derived by the approximated moments, are
analogy defined as

c̄n(t) := m̄n(t)−
n−1∑
k=1

(
n− 1

k − 1

)
c̄k(t)m̄n−k(t). (3.41)

At this juncture it has to be discussed what the appropriated order of the series
approximation is. Therefore theorem 8, series of a product of functions, is
helpful. Applying this theorem to the definition of c̄n(t) shows that, if the order
of the Taylor Series for m̄n(t) is k, the order of c̄n(t) is k as well. As well as
there is a Moment Generating Function for the moment, there is a Cumulant
Generating Function (CGF) for the cumulants. The CFG is only well defined
in time space. The connection between MGF and CGF is simply given by

M̂(iχ) = eF (χ;t). (3.42)

In this thesis the CFG will play a minor role. An interesting discussion can be
found in [Flindt et al., 2010b, 11], where the identical results are gained in one
step

eS(χ,t) =
1

2πi

c+i∞∫
c−i∞

eztP̂dz. (3.43)

3.3.4 Central moments

The representation of moments, cumulants, current and Fano factor in terms
of raw moment of waiting

〈
τk
〉

is helpful for the clean limit. In that case the
density function is a delta function f(τ) = δ(τ − τ0), which replaces the waiting
time by its value

〈
τk
〉
→ τk0 . A distribution function, which is given in terms of

the expected value and its central moments, is likely in reality, where distributed
waiting times appear. Therefore it is convenient to express the results in terms
of central moment (e.g. ck(t, 〈τ 〉,

〈
τ2
〉
,
〈
τ3
〉
. . . ) → ck(t, 〈τ 〉, µ2, µ3, . . . )). The

transformation function is given by [Weisstein, 2010a]

µn =
n∑
k=0

(
n

k

)
(−1)n−k

〈
τk
〉
〈τ 〉n−k, (3.44)

which implies [Weisstein, 2010b]

〈τn〉 =
n∑
k=0

(
n

k

)
µk〈τ 〉n−k. (3.45)
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3.3.5 Named forms

Table 3.1: Named statistical quantities

mean 〈P〉 = m1(t) = c1(t)

variance Var(P) = c2(t) =
〈
(P− 〈P〉)2

〉
=
〈
P2
〉
− 〈P〉2

skewness
〈(P−〈P〉)3〉

Var(P)
3
2

= c3(t)

c2(t)
3
2

kurtosis c4(t)
c2(t)

Apart from the named forms for statistical properties (listed in table 3.1) there
are two named quantities. First of all, the (average) current, which is as expected
the time derivative of the first moment.

Current
�� ��I(t) = ∂tm1(t) (3.46)

Secondly there is the Fano factor [Fano, 1947], which is defined by

Fano factor

�
�

�

F (t) =

c2(t)

c1(t)
. (3.47)

Roughly spoken the Fano factor is the common way to describe the quality of
the current. A small Fano factor stands for a constant current.

Fano factor in Laplace Space*

A hardly possible way to calculate the second cumulant, is to use a standard
Laplace Transformation

ĉ2(z) = m̂2(z)− 1

2πi

∫ c+i∞

c−i∞
m̂1(σ)m̂1(z − σ) dσ. (3.48)

In that case one has to be careful with the choice of c, because all poles of
m̂1(z) and not of m̂1(σ)m̂1(z − σ) have to be collected to keep the integral
convergent12.

Afterwards, the Laplace Transformation of the reciprocal of the first moment in
time space is needed. Unfortunately there seems to be no easy way to calculate

12That formula was derived via LT
t→z

(m1(t)2) =
∫ t
0 m1(t)m1(t)e−zt dt, where one replaces

a term m1(t) by
∫ c+i∞
c−i∞ m̂1(σ)eσt dσ. The pole of m̂1(z) with the highest real part is

called σmax. Now one can choose c = σmax + ε with a small ε > 0. So LT
t→z

(m1(t)2) =∫ c+i∞
c−i∞ m̂1(σ)

∫ t
0 m1(t)e−(z−σ)t, dt dσ, where

∫ t
0 m1(t)e−(z−σ)t dt = m̂1(z − σ), which only

converges if Re(z − σ) > σmax ⇒ Re(z) > ε.
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the reciprocal in the time domain of a function given in Laplace Space in general.
So one would need to transform the first moment into time space, calculate the
reciprocal and transform back again. In most cases it will be easier to use the
general method presented in the next chapter. For the case that

m̂1tInv(z) ≡ LT
t→z

 1

LT
z→t
−1(m̂1(z))

 (3.49)

is known, the Fano factor in Laplace Space can be defined as

F̂ (z) :=
1

2πi

∫ c+i∞

c−i∞
ĉ2(z)m̂1tInv(z) dσ. (3.50)

This is the Laplace Transformation of

F (t) =
c2(t)

c1(t)
, (3.51)

which was the Fano factor, defined by (3.47).

To carry out this integration might involve some difficulties. This will be clarified
with the example. In the example this method is used, even though it is not
the simplest way to derive the result (see section 5.1).

3.4 Long-time limit

The time evolution of the moments and cumulants is often hard to obtain. The
impurity case in chapter 7 is an example for that (see also [Zedler et al., 2009]).
In many cases the key interest is in the long-time values and not the behavior
of the current on very small time steps. In addition to that the approximations
made in the derivation are better for large times. Therefore, one regards the
quantities at large times. In mathematical words in the limit for t→∞.

The long-time limit for current is defined as

Long-time Current

�
�

�
�

〈I∞〉 ≡ lim
t→∞

∂tm1(t)

= lim
z→0

z2m̂1(z).

(3.52)

(3.53)

The proof of the equality of definition 3.53 is given within theorem 9.

With a known Fano factor in Laplace Space, it would be possible to derive the
long-time limit as in the former section.

F (t→∞) = lim
z→0

zF̂ (z) (3.54)

In the regarded cases this does not occur. So one has to use the standard method
to calculate the Fano factor in the time space.

Long-time Fano factor

�
�

�

〈F∞〉 ≡ lim

t→∞

c2(t)

c1(t)
(3.55)
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In the same style the long-time limit for higher order cumulants is obtained. A
special notation for that is not being introduced. So we write

lim
t→∞

ck(t)

c1(t)
(3.56)

for the k’th cumulant normed to the first cumulant in the long-time limit.
This normation is helpful, because one otherwise obtains many infinite values
for the cumulants.13

13Even the simplest example, the Tunneling Junction in the clean limit and infinite bias
limit, leads to infinite long-time cumulants if no feedback loop is applied to the system cf.
chapter 9 for details.
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Application to random
waiting times
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Chapter 4

Formalism

In this part it will be explained, how current, Fano factor and higher order
cumulants can be obtained for random tunneling rates. One might ask oneself
why the rates should become random in physical reality. Imagining a real sys-
tem, for example the Single Quantum Dot with n-dependent tunneling rates. If
one remembers the derivation, where the bath was described as grand canonical
ensemble, one might get the idea of a continuous change of the rates up to a
balanced situation. This case has already been discussed.However, the assump-
tion that the bath is constant, does not fit to the real situation, where many
fluctuations exist in the bath. Due to the size of the bath, there is no reasonable
chance to find an exact expression. Therefore, one assumes that the rates are
random variables with a certain statistic. This approach is common in solid
state physics, where the system size becomes large soon.

Assumption: statistical independence

With the assumption that all Γ
(n)
α are statistically independent, one is able to

solve the Quantum Master Equation (nQME) equally to the way, taken in the
clean limit. The key idea is to replace the n-independent terms by their
expectation values.

Two way randomness

This random rates read to two types of random processes. On the one hand
there is the statistical randomness that is induced by the random rates. On the
other hand there is the standard quantum mechanical randomness that occurs
in the clean limit as well. In this thesis we will focus on the expectation value
of the probability with regard to the tunneling rates. Higher Moments, with
regard to the statistical distribution of the rates, are not taken into account.
For example the calculation of the Fano factor of the Fano factor is possible,
but a reasonable physical interpretation of this value cannot be obtained at the

43
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actual level of considerations. For the nQME (3.1) this means〈
∂tρ

(n)(t)
〉

=
〈
L(n)

0 ρ(n)(t) + J n−1ρ
(n−1)(t)

〉
. (4.1)

This equation is no really good starting point as the right hand side depends
on n, n− 1. The use of the solved form in Laplace Space (3.10)

〈ρ̂n(z)〉 =
〈
Ŵ(n)

π (z)P̂0(z)ρ0

〉
(4.2)

is much better, because the rates factorize in this representation. At this point

it is helpful to define Ŵ(z) =
〈
Ŵn(z)

〉
, P̂(z) =

〈
P̂n(z)

〉
.

Now the expectation value for the system density matrix in Laplace
Space reads �� ��〈ρ̂n(z)〉 = Ŵ (z)nP̂(z)ρ0. (4.3)

With the discrete Fourier Transformation and the short notation ρχ(t) =
∑
n ρ

(n)(t)einχ

one gets

〈ρ̂χ(z)〉 =
[
1− eiχŴ (z)

]−1

P̂(z)ρ0. (4.4)

Defining the k’th moment in Laplace Space as

m̂k(z) :=
Tr∂kχ〈ρ̂χ(z)〉

ik

∣∣∣∣∣
χ→0

, (4.5)

leads formally to similar moments as in the clean limit. 1

Time domain

Formally one can transfer back to the time domain and derive the Pn(t).
Calling P(t) the Inverse Laplace Transformation of P̂(z) and Rχ(t) the Inverse

Laplace Transformation of Ĝχ(z) = [1− eiχŴ (z)]−1, leads to the formal defini-
tion

〈ρχ(t)〉 := P(t) ∗Rχ(t). (4.6)

In this context ∗ stands for the convolution-integral. If this expression can be
calculated analytically, depends on the concrete realization of the system.

1Strictly one has to write 〈m̂k(z)〉 instead of m̂k(z) .
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Waiting times

It is often helpful to use waiting times τ instead of tunneling rates Γ. Especially
in experiments the measurement results are expected to be waiting times instead
of tunneling probabilities. The general relation between waiting times and
tunneling rates is defined by

(waiting time) τ :=
1

Γ
. (4.7)

Waiting times and tunneling rates are connected via the following relationship

〈Γ〉 =

∫
Γf(Γ) dΓ =

∫
1

τ
f̃(τ) dτ (4.8)

f̃(τ) :=

∫
δ

(
1

Γ
− τ
)
f(Γ) dΓ =

f(Γ)
1

Γ2

∣∣∣∣
Γ= 1

τ

=
1

τ2
f

(
1

τ

)
(4.9)

and the other way round.

Obviously f̃(τ) fulfills the same properties as f(Γ). Integration, by substitution
(x = τ−1) of∫ ∞

0

f̃(τ) dτ =

∫ ∞
0

1

τ2
f

(
1

τ

)
dτ =

∫ 1
∞

1
0

−x
2

x2
f(x) dx =

∫ ∞
0

f(x) dx = 1,

(4.10)

shows the property of norming.

Alternative denotation: Negative moments

Instead of waiting times,
〈
Γ−k

〉
could have be called k’th negative moment. A

disadvantage of this appellation is that waiting times can be mixed up with the
waiting time distribution for constant tunneling rates studied in [Brandes, 2008].
The origin of the waiting times is the default quantum mechanical blur. In
contrast to that, the waiting time distribution discussed in this thesis, targets the
statistical uncertainness of tunneling rates. The investigation of the relationship
between this different types of waiting times could be the subject of future
research. A brief discussion on that topic can be found in chapter 10.

nQME Mathematica Package

Due to the huge computational effort, which is needed to do the calculations
a Mathematica Program was developed. This program is aware to calculate
automatically the analytical expressions for current, Fano factor and higher
cumulants for the long time limit. The only information needed is the Liouvillian
and Jump operator of the system. Furthermore, this Mathematica Package
involves a bundle of useful tools for to perform numeric simulations and generate
plots and animations. In addition, there is a snipped for the derivation of the
Liouvillian for a given Hamiltonian.





Chapter 5

Simple examples

In the following the method, proposed in the former chapter, is applied to simple
realistic quantum mechanical systems. It is being started with the simplest
system, the Tunneling Junction (5.1). Afterwards the Single Quantum Dot is
described in section 5.2. In the following the method, proposed in the former
chapter, is applied to simple realistic quantum mechanical systems. It is being
started with the simplest system, the Tunneling Junction (5.1). Afterwards the
Single Quantum Dot is described in section 5.2.

In the following section this method is being generalized to systems without
internal dynamics, transitions in a ring (5.3). Finally an extended discussion of
the Double Quantum Dot is performed in section 5.4.

For all cases current and Fano factor are obtained in the long-time limit.

5.1 Tunneling Junction

The simplest, imaginable system is a Tunneling Junction, which is visualized in
figure 5.1. On this system the first experimental measurements were performed
by [Levitov et al., 1996] (up to the 3rd cumulant) and later on by [Reulet et al.,
2003]. In this thesis only the special case of the infinite bias limit is taken into
account. So the jump and nojump operators can be easily obtained.

The dimension of the system density operator is 1, which makes Liouvillian and
jump operator be 1x1-matrices, which are isomorph to the scalars1

L(n)
0 = −Γ(n),J (n−1) = Γ(n−1) (5.1)

For this system the nQME (3.1) reads

∂tρ
(n)(t) = Γ(n−1)ρ(n−1)(t)− Γ(n)ρ(n)(t). (5.2)

1This seems to be a formally negligibility, but plays a decisive role in numerical implemen-
tations.

47
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G

µL

µR

Right reservoirLeft reservoir

Figure 5.1: Visualization of a Tunneling Junction in infinite bias limit with µL =
−µR =∞

The application of the Laplace Transformation (LT
t→z

) leads to

zρ̂n(z)− ρn(t=0) = Γ(n−1)ρ̂n−1(z)− Γ(n)ρ̂n(z). (5.3)

Due to the fact that every density operator has trace-class Tr(ρ) = 1 (see ap-
pendix (B.7), p. 134), ρn(t=0) = δn,0 is given.

The recursive equation for ρ̂n(z) reads

ρ̂n(z) =
1

z − Γ(n)

(
Γ(n−1)ρ̂n−1(z) + δn,0

)
. (5.4)

This equation can be recursively solved (cf. (3.10))

ρ̂n(z) =

(
1∏

k=n

Γ(k)

z + Γ(k)

)
1

z − Γ(0)
. (5.5)

According to the general proceedings we define

P̂n(z) =
1

z + Γ(n)
, Ŵn(z) =

Γ(n)

z + Γ(n)
, ρ0 = 1. (5.6)

So (3.10) becomes in the

one dimensional case

�
�

�
�ρ̂n(z) =

1

z + Γ(n)

(
0∏

k=n−1

Γ(k)

z + Γ(k)

)
. (5.7)
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Clean limit

As a first step, we will reproduce the known results for the clean case. With
Γ(k) := Γ = constant, one gets

ρ̂n(z) =
Γn

(z + Γ)n+1
. (5.8)

Applying a discrete Fourier Transformation FST
n→χ

to the former equation leads

to

ρ̂χ(z) =
1

z − Γ(eiχ − 1)
. (5.9)

After the Inverse Laplace Transform LT
z→t
−1 the time dependent counting field

reads

ρχ(t) = e−Γ(1−eiχ)t. (5.10)

In this one dimensional case all density matrices are 1x1-matrices. So the trace
operation is the identity

Pχ(t) := eSp(χ,t) = ρχ(t) (5.11)

Sp(χ, t) = Γ(eiχ − 1)t. (5.12)

This result is in accordance with the known result of [Flindt, 2007][4.8].

For current, Fano factor and higher cumulants, one gets the (known) results

〈I∞〉 = lim
z→0

z2 lim
iχ→0

eiχΓ(
z − (eiχ − 1)Γ

)2 = lim
z→0

z2 Γ

z2
= Γ (5.13)

〈F∞〉 = lim
t→∞

ck(t)

c1(t)
= 1. (5.14)

In other words all cumulants grow linear in time. This result will change, if a
control loop is applied to the system. This case is explained in chapter 9.

5.1.1 Current

In the following the current is derived. The first value we are interested in is
〈ρ̂n(z)〉. It has being assumed that all Γn are statistically independent.

Remembering the definition of the propagator P̂n(z) =
[
z − L(n)

0

]−1

and the

definitions

P̂(z) =
〈
P̂0(z)

〉
=

〈
1

z + Γ(n)

〉
=

〈
1

z + Γ

〉
and (5.15)

Ŵ (z) = J P̂(z) =

〈
Γ(n)

z + Γ(n)

〉
=

〈
Γ

z + Γ

〉
=

〈
z + Γ− z
z + Γ

〉
= 1− zP̂(z),

(5.16)
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where the concrete Liouvillian and jump operator for the Tunnel Junction were
inserted, according to (5.1).

Consequently (4.3) becomes

〈ρ̂n(z)〉 =

〈
1

z + Γ(n)

〉(n−1∏
i=0

〈
Γ(i)

z + Γ(i)

〉)

=

〈
1

z + Γ

〉(〈
Γ

z + Γ

〉)n
(5.17)

=P̂(z)
(

1 + zP̂(z)
)n

. (5.18)

The next step it to do the Fourier Transformation 〈ρ̂n(z)〉 ⇒ 〈ρ̂χ(z)〉.
In accordance to (4.4) this yields to2

〈ρ̂χ(z)〉 =
P̂(z)

1 + eiχ
(
zP̂(z)− 1

) . (5.19)

The first moment m̂1(z) := (−i∂χ)ρ̂χ(z) at χ = 0 is

m̂1(z) :=
1

z2P̂(z)
− 1

z
. (5.20)

For the current that means

〈I∞〉 = lim
z→0

z2m̂1(z)

= lim
z→0

1

P̂(z)
− z. (5.21)

A series approximation of P̂(z) up to the third order of z is

P̂(z) =

〈
1

Γ

〉
− z
〈

1

Γ2

〉
+ z2

〈
1

Γ3

〉
+ O3(z). (5.22)

By using (4.7) the former equation can be rewritten to

P̂(z) = 〈τ 〉 − z
〈
τ2
〉

+ z2
〈
τ3
〉

+ O3(z). (5.23)

For the long term current only the first term of the series development accounts,
as the other terms lead to an order below zero in the current and disappear (see
theorem 8). Inserting this first order approximation in (5.21) and executing the
long-time limit results in the

long-time current

�
�

�

〈I∞〉 =

〈
1

Γ

〉−1

= 〈τ 〉−1. (5.24)

2With the geometric sequence.
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For the clean case the long-time limit is known as I∞,cln = Γ. This can be

also expressed in terms of inverse Tunneling Rates I∞,cln = 1
τ . For the clean

case both formulas describe exactly the same expression, but by using different
variables. The question is, due to which physical reasons, the representation in
terms of inverse waiting times, is formal equivalent to the random case. On the
one hand the rate Γ is microscopically derived from the Interaction Hamiltonian
Tkαnsb†k + . . . . Therefore, one might think that this is the canonical variable to

describe the current. One the other hand the simple definition I = Q̇  n
t is

an argument for the waiting time interpretation. In conclusion, it can be stated
that at this point no convincing physical interpretation can be given. Explana-
tions follow in the c case (see section 5.2) At this point the difference between
waiting time and tunneling rate interpretation, respectively the connection be-
tween tunneling rate an current, is discussed. In the tunneling rate picture
the following goal can be formulated: If the exception value for Γ, 〈Γ〉 , is known,
one would like to receive a formula for the long-time current. Mathematically
spoken, an arability function f(〈Γ〉) is needed, for which

〈I∞〉 = f(〈Γ〉) = 〈τ 〉−1 (5.25)

holds true. f(Γ) = Γ follows from the clean case, which means a delta distri-
bution for the Probability Distribution of the tunneling rates. At this point no
obvious solution for f(〈Γ〉) is given.

A budding approach is �
�

�

〈τ〉〈Γ〉 = 〈τ〉

〈
1

τ

〉
≡ 1 + α. (5.26)

α exists for every Probability Density Functions (PDF) of Γ or τ and becomes
0 in the clean limit. In that case it can be shown that α ≥ 0 is valid. The prove
is outlined in the appendix (A.1.1 p. 129).

Thus, the current in the tunneling rate picture reads

〈I∞〉(〈Γ〉, α) =
〈Γ〉

1 + α
. (5.27)

A function for f(〈Γ〉) could not be found, but a function, which depends on the
expectation value and one additional parameter. For this Tunnelling Junction
Model it is not traceable, for which reason this parameter is sensible. This will
be clarified in the case of the Double Quantum Dot (cf. section 5.4). It has
to be again remarked that

〈
Γ−1

〉
could be called first negative moment (cf.

chapter 4).
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The observation up to this point can be summarized in the following manner:

1. The long-time random current is the inverse of the expectation value of
the waiting time, 〈I∞〉 = 1

〈τ 〉 in the waiting time picture.

2. In the Tunneling rate picture the long-time random current is smaller
than the expectation value of the tunneling rate 〈I∞〉 ≤ 〈Γ〉.

3. To calculate the long-time random current in the tunneling rate picture
one needs an additional information about the distribution of the tunneling
rates, beside the mean of the tunneling rate.

From now on the waiting time picture is, therefore, preferred.

5.1.2 Higher moments

The higher moments can be calculated in the same way. Using the developed

Mathematica Package nQME leads with T̂ (z) = Ŵ (z)Ĝ0(z) = 1−zP̂(z)

1−1+zP̂(z)
=

1
zP̂(z)

− 1 to

m̂1(z) =
1

z2P̂(z)
− 1

z

(5.28)

m̂2(z) =
2

z3P̂(z)2
− 3

z2P̂(z)
+

1

z

(5.29)

m̂3(z) =
6

z4P̂(z)3
− 12

z3P̂(z)2
+

7

z2P̂(z)
− 1

z

(5.30)

m̂4(z) =
24

z5P̂(z)4
− 60

z4P̂(z)3
+

50

z3P̂(z)2
− 15

z2P̂(z)
+

1

z

(5.31)

m̂5(z) =
120

z6P̂(z)5
− 360

z5P̂(z)4
+

390

z4P̂(z)3
− 180

z3P̂(z)2
+

31

z2P̂(z)
− 1

z

(5.32)

m̂6(z) =
720

z7P̂(z)6
− 2520

z6P̂(z)5
+

3360

z5P̂(z)4
− 2100

z4P̂(z)3
+

602

z3P̂(z)2
− 63

z2P̂(z)
+

1

z
.

(5.33)

A way to obtain the long-time limit is to calculate Taylor Series for P̂(z) at
z = 0 up to order z0 to calculate the long-time limit afterwards.
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In z space the first three moments read

m̂1(z) =
1

〈τ 〉z2
+

〈
τ2
〉

〈τ 〉2z −
1

z
+O

(
z0
)

(5.34)

m̂2(z) =
2

〈τ 〉2z3
+

4
〈
τ2
〉
− 3〈τ 〉2

〈τ 〉3z2
+
〈τ 〉4 − 3

〈
τ2
〉
〈τ 〉2 − 4

〈
τ3
〉
〈τ 〉+ 6

〈
τ2
〉

2

〈τ 〉4z +O
(
z0
)

(5.35)

m̂3(z) =
6

〈τ 〉3z4
+

6
(
3
〈
τ2
〉
− 2〈τ 〉2

)
〈τ 〉4z3

+
7〈τ 〉4 − 24

〈
τ2
〉
〈τ 〉2 − 18

〈
τ3
〉
〈τ 〉+ 36

〈
τ2
〉

2

〈τ 〉5z2

+
7
〈
τ2
〉
〈τ 〉4 + 24

〈
τ3
〉
〈τ 〉3 + 18

(〈
τ4
〉
− 2
〈
τ2
〉

2
)
〈τ 〉2 − 72

〈
τ2
〉〈
τ3
〉
〈τ 〉+ 60

〈
τ2
〉

3

〈τ 〉6z

− 1

z
+O

(
z0
)
. (5.36)

Higher moments can be calculated similarly. The Inverse Laplace Transforma-
tion LT

z→t
−1 is now quiet simple, because only expressions of the form az−n have

to be transformed, which leads to a tn−1

(n−1)! (compare theorem 8).

m1(t) =
t

〈τ 〉 +

〈
τ2
〉

〈τ 〉2 − 1 (5.37)

m2(t) =
t2

〈τ 〉2 +
t
(
4
〈
τ2
〉
− 3〈τ 〉2

)
〈τ 〉3 +

〈τ 〉4 − 3
〈
τ2
〉
〈τ 〉2 − 4

〈
τ3
〉
〈τ 〉+ 6

〈
τ2
〉

2

〈τ 〉4
(5.38)

m3(t) =
t3

〈τ 〉3 −
3t2
(
2〈τ 〉2 − 3

〈
τ2
〉)

〈τ 〉4 +
t
(
7〈τ 〉4 − 24

〈
τ2
〉
〈τ 〉2 − 18

〈
τ3
〉
〈τ 〉+ 36

〈
τ2
〉

2
)

〈τ 〉5

+
7
〈
τ2
〉
〈τ 〉4 + 24

〈
τ3
〉
〈τ 〉3 + 18

(〈
τ4
〉
− 2
〈
τ2
〉

2
)
〈τ 〉2 − 72

〈
τ2
〉〈
τ3
〉
〈τ 〉+ 60

〈
τ2
〉

3

〈τ 〉6 − 1.

(5.39)

Checking the current in time-domain leads to

〈I∞〉 = ∂tm1(t→∞) =
1

〈τ 〉 . (5.40)

In this context the long-time has to be taken into account, as within the process
of Taylor Series Expansion Q

z=0
, only terms of order tn were taken into account.

c2(t→∞)c−1
1 =

2
〈
τ2
〉

〈τ 〉2 − 1 (5.41)

c3(t→∞)c−1
1 =

〈τ 〉4 − 6
〈
τ2
〉
〈τ 〉2 − 6

〈
τ3
〉
〈τ 〉+ 12

〈
τ2
〉

2

〈τ 〉4 (5.42)

Of special interest is the Fano factor. With help of the displacement-law 5
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〈
τ2
〉

= 〈τ 〉2 +
〈(

Γ−1 − 〈τ 〉
)2〉

it can be rewritten to

Fano factor (Tunneling Junction)

�
�

�
�

〈F∞〉 =
2
〈
τ2
〉

〈τ 〉2 − 1 = 1 +
2
〈
(τ − 〈τ 〉)2

〉
〈τ 〉2 .

〈F∞〉 ≥ 1

(5.43)
The last inequality holds true, because the standard derivation is always ≥ 0.

5.1.3 Special observations*

In the following section special observations for the Tunneling Junction are
summed up. This considerations are facultative and have no influence on the
following chapters.

Residual method for the Fano factor

To illustrate the principal introduced in section 3.3.5, the Fano factor will be
calculated as mentioned.

First the m̂1(z), m̂2(z) can be calculated by (3.27) with the values of (5.9)

m̂1(z) =
Γ

z2
(5.44)

m̂2(z) =
Γ

z2
+ 2

Γ2

z3
. (5.45)

Now ĉ1(z) can be calculated according to (3.48)

ĉ2(z) =
Γ

z2
+ 2

Γ2

z3
− 1

2πi

∫ c+i∞

c−i∞

Γ2

σ2(z − σ)2
dσ

=
Γ

z2
+ Γ2

(
2

z3
− 1

2πi

∫ c+i∞

c−i∞

1

σ2(z − σ)2
dσ

)
. (5.46)

So far one has to remind that the choice of c is not arbitrary. 1
σ2 has one pole

at σ = 0. Therefore, c = ε with 0 < ε < z is a applicable choice.

The kernel of the integral has two poles of second order at σ = 0, σ = z. But
only the pole at σ = 0 has to be taken into account.

With the residual theorem 1
2πi

∫
f(σ) dσ =

∑
nRes(f ;σn) with Res(f ;σn) =

limσ→σn
1

(k−1)!∂
k−1
σ

(
(σ − σn)kf(σ)

)
[Herbort, 2008] the integral can be evalu-

ated with

Res

(
1

σ2(z − σ)2
;σ → 0

)
=

1

1!
lim
σ→0

∂σ (z − σ)
−2

=
2

z3
. (5.47)
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Thus, the second cumulant in Laplace Space evaluates to

ĉ2(z) = m̂1(z) =
Γ

z2
. (5.48)

Step distribution*

Taking the Uniform Distribution

f(Γ) =
Θ(Γ− ΓMin)−Θ (Γ− ΓMax)

ΓMax − ΓMin
(5.49)

as example for a tunneling rate distribution.

0 GMin=GMean-Ε GMean GMax=GMean+Ε

G

0

1

GMax-GMin

f G
Probability distribution for tunnel rate G

Figure 5.2: Step distribution

With the use of ∂ΓLog(z + Γ) = (Γ + z)−1 and ∂ΓΓ− zLog (Γ + z) = z
z+Γ it is

easy to calculate that 〈ρ̂n(z)〉 yields, without caring about the poles, to

〈ρ̂n(z)〉 =

(
1− z

ΓMax − ΓMin
Log

(
z + ΓMin

z + ΓMax

))n
1

ΓMax − ΓMin
Log

z + ΓMax

z + ΓMin
.

(5.50)
With the use of the short hand notation

P̂(z) :=
1

ΓMax − ΓMin
Log

(
z + ΓMax

z + ΓMin

)
=

〈
1

z + Γ

〉
, (5.51)

the known form

〈ρ̂n(z)〉 = P̂(z)
(

1 + zP̂(z)
)n

(5.52)

is obtained.

As described above FST
n→χ

: 〈ρ̂n(z)〉 ⇒ 〈ρ̂χ(z)〉

〈ρ̂χ(z)〉 =
P̂(z)

1 + eiχ
(
zP̂(z)− 1

) . (5.53)
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The next step is the Inverse Laplace Transformation LT
z→t
−1 . According to [L

et al., 1966] the Inverse Laplace Transform is known for Log z−az−b → ebt−eat
t , but

the Inverse Laplace Transformation of 1
c1+c2zLog( z+c3z+c4 )

is probably unknown.

Defining l(t) as the Inverse Laplace Transformation of 1

1+eiχ(1+zP̂(z))
leads to

the form

〈ρχ(t)〉 =
e−ΓMaxt − e−ΓMint

t
∗ l(t). (5.54)

In that case * stands for the convolution-integral. As l(t) is not known yet,
another way has to be found. Of course one could investigate the long-time
limit as done for the Single Quantum Dot in the following section. At this point
another possible approach is discussed.

Small bandwidth approach*

A possible approach is to develop 〈ρ̂χ(z)〉 around ⊥ ≡ ΓMax+ΓMin
2 ..

The series approximation of 〈ρ̂χ(z)〉 reads

〈ρ̂χ(z)〉0 =
1

z +⊥
(
eiχ − 1

) (5.55)

〈ρ̂χ(z)〉2 =
ε2
(
eiχ − 1

)
3(⊥+ z)

(
z +⊥

(
eiχ − 1

))2 (5.56)

〈ρ̂χ(z)〉4 =

(
ε4
(
eiχ − 1

))(
9zeiχ − 5(⊥

(
eiχ − 1

)
+ z)

)
(⊥+ z)

3
(
⊥
(
eiχ − 1

)
+ z
)3 (5.57)

(cf. definition 14). ⊥ = ΓMax+ΓMin
2 The derivation of the known result m1,t = ⊥t

for the limit ΓMax ← ⊥,ΓMin → ⊥ could be used as a simple check. Due to the
long terms of the Taylor Series, Mathematica is used.

. . .

〈ρ̂χ(z)〉4 =
ε4
(
−1 + eiχ

) (
9⊥eiχ − 9⊥+ 5zeiχ − 9z

)
45(⊥+ z)3 (⊥ (−eiχ) +⊥+ z)

3

− ε2
(
−1 + eiχ

)
3(⊥+ z) (⊥eiχ −⊥− z)2

− 1

⊥eiχ −⊥− z (5.58)

The detailed calculation is to find in the Mathematica Notebook NB:SmallBWBar.
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GR

1-GR

GL

1-GLÈ0\ È1\

Figure 5.3: Single Quantum Dot with n-independent transmission rates
A simple system with a steady state.
As only the states |0〉〈0| , |1〉〈1| occur, it is sufficient to display the pure
states:
|0〉= no electron is in the dot
|1〉= dot is filled with one electron

To stay in the default notation Γα is the rate of change here.
Thus, the probability that an electron tunnels during the time t, is given
by Γα∆t.



58 CHAPTER 5. SIMPLE EXAMPLES

5.2 Single Quantum Dot

The Single Quantum Dot (SD) is a system without relevant internal dynam-
ics. Therefore, it is sufficient to regard the |0〉〈0| , |1〉〈1| elements of the density
matrix. Moreover, the Single Quantum Dot is a real physical system, where
measurements can be made on [Gustavsson et al., 2005, Lu et al., 2003, Fuji-
sawa et al., 2004]. A picture of a realized Single Quantum Dot can be seen in
figure 1.1. Despite this experimental interest, we are in the comfortable situa-
tion that it is easy to guess the system description by considering figure 5.4 and
transfer the possible processes into a functional scheme (see figure 5.3).

GL GR

µL

µR

System Right reservoirLeft reservoir

Figure 5.4: Visualization of a Single Quantum Dot in infinite bias limit with µL =
−µR =∞

This scheme has to be understood in the following manner: The squares denote
the state and the numbers on the arrows denote the probability for a change
(or no change). A step in the time evolution looks like(

p0(t+ ∆t)
p1(t+ ∆t)

)
=

(
1− ΓL∆t ΓR∆t

ΓL∆t 1− ΓR∆t

)(
p0(t)
p1(t)

)
(5.59)

⇒ ∂t

(
p0(t)
p1(t)

)
≡ lim

∆t→0

(
p0(t+ ∆t)
p1(t+ ∆t)

)
−
(
p0(t)
p1(t)

)
∆t

=

(
−ΓL ΓR
ΓL −ΓR

)
. (5.60)

’That is the Quantum Master Equation!’ Alternatively the dynamics of the SD
can be expressed via the so called Lindblad Master Equation [Breuer and
Petruccione, 2002, Lindblad, 1979]. The jump in- and jump out process can be

described via jα :=

{√
ΓL |1〉〈0| α = L√
ΓR |0〉〈1| α = R

and j†α accordantly.

∂tρ = i[ρ,Hint]︸ ︷︷ ︸
0 for SD

+
∑
α

(
jαρj†α −

1

2

{
j†αjα, ρ

}
+

)
(5.61)
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∂tρ = ΓL

(
|1〉〈0| ρ |0〉〈1| − 1

2
{|0〉〈1| |1〉〈0| , ρ}+

)
+ ΓR

(
|0〉〈1| ρ |1〉〈0| − 1

2
{|1〉〈0| |0〉〈1| , ρ}+

)
(5.62)

∂tρ = ΓL (ρ0,0 |1〉〈1| − ρ0,0 |0〉〈0|) + ΓR (ρ1,1 |0〉〈0| − ρ1,1 |1〉〈1|) (5.63)

=

(
−ΓL ΓR
ΓL −ΓR

)
ρ = Lρ (5.64)

The different forms of possible notation were used here. Especially in the last
line, ρ has to be interpreted as superoperator, whereas in the second line, ρ
has to be seen as the ordinary density matrix. Obviously the result is equal
to the result, derived from the graphical representation of this density matrix
(see figure 5.3). In any case by equation (5.64) the time evolution of the total
system density matrix is described.

Simplified derivation of n-dependent case

Disregarding the microscopic derivation of chapter 2, a brief prove of feasibility
follows. First of all, the n-dependence of the system has to be investigated.
Therefore, it has to be examined, which processes changes the n. For conve-
nience, the notation NL = NL0

− n − 1, NR = NR0
− n is used here (cf. figure

2.1, p. 10). The relationship between ρ and ρ(n)(t) was given by

ρ(t) =
∑
n

ρ(n)(t). (5.65)

The investigation has to be continued by checking the terms of the Lindblad

Form. The constant rate ΓL,ΓL will be replaced by Γ
(n)
L ,Γ

(n)
R and jα changes to

j
(n′)
α :=

{√
ΓL(n′) |n′; 1〉〈0;n′| α = L√
ΓR(n′) |n′ + 1; 0〉〈1;n′| α = R

4 and j†α
(n′′)

appropriate and

ρ(n) = p0n |0〉〈0|+ p1n |1〉〈1|.

For the Lindblad Equation (5.61) this leads to

∑
n

∂tρ
(n)(t) =

∑
α,n,n′,n′′

(
j(n
′)

α ρ(n)j†α
(n′′) − 1

2

{
j†α

(n′′)
j(n
′)

α , ρ(n)
}

+

)
. (5.66)

3In contrast to section 5.3, 1-. . . was suppressed here
4|n;x〉〈x;n| means that n is the number of particles and x the system state
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GL
0

-GL
0

GR
0

-GR
0

GL
1

-GL
1

GR
1

-GR
1

GL
2

-GL
2

GR
2

-GR
2

GL
3

-GL
3

GR
3

-GR
3

0;00;0 0;11;0

1;00;1 1;11;1

2;00;2 2;11;2

3;00;3 3;11;3

4;00;4

∂tρ
(0) :

∂tρ
(1) :

∂tρ
(2) :

Figure 5.5: Visualization of ∂tρ
(n)(t) for a Single Quantum Dot with n-dependent

transmission rates Γ
(n)
L ,Γ

(n)
R for n ∈ {0, 1, 2}

|0〉: pure state of the empty dot
|1〉: pure state of the full dot
Processes, which do not change the number of tunneled electrons (start

and target of the arrow are in the same row) are described with L(n)
0 .

The down going arrow corresponds to the jump operator J (n).3
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Evaluating the α = R part of the sum∑
n,n′,n′′

(√
Γ

(n′)
R Γ

(n′′)
R |n′ + 1; 0〉〈1;n′| ρ(n) |n′′; 1〉〈0;n′′ + 1|

−

√
Γ

(n′)
R Γ

(n′′)
R

2

{
|n′′; 1〉〈0;n′′ + 1| |n′ + 1; 0〉〈1;n′| , ρ(n)

}
+


=
∑
n

Γ
(n)
R p1,n |n+ 1; 0〉〈0;n+ 1| − Γ

(n)
R

2

{
|n; 1〉〈1;n| , ρ(n)

}
+

=
∑
n

Γ
(n−1)
R p1,n−1 |n; 0〉〈0;n| − Γ

(n)
R p1,n |n; 1〉〈1;n| (5.67)

=
∑
n

(
0 Γ

(n−1)
R

0 0

)
ρ(n−1) +

(
0 0

0 −Γ
(n)
R

)
ρ(n) (5.68)

and a similar calculation for α = L, leads to∑
n

∂tρ
(n)(t) =

∑
n

(
−Γ

(n)
L −Γ

(n)
R

Γ
(n)
L 0

)
ρ(n) +

(
0 Γ

(n−1)
R

0 0

)
ρ(n−1) (5.69)

⇒ ∂tρ
(n)(t) =

(
−Γ

(n)
L 0

Γ
(n)
L −Γ

(n)
R

)
ρ(n) +

(
0 Γ

(n−1)
R

0 0

)
ρ(n−1) (5.70)

∂tρ
(n)(t) =L(n)

0 ρ(n)(t) + J (n−1)ρ(n−1)(t). (5.71)

In that way the nQME has been motivated for the special case of the Single
Quantum Dot. A visual representation of this equation can be found in figure
5.5. If there is internal system dynamics Hint (cf. section 5.4), this is simply

added to L(n)
0 .

5.2.1 Counting field

Transformation to the Laplace Space as discussed in section 3.2, yields ρ̂n(z) =

P̂n(z)Ŵ(n−1)

π,0 (z)ρ0.

With the assumption that

• all Γ
(n)
R/L are statical independent,

• and no mixed k, k − 1 from the same side (R,L) appear,

Ŵ(n−1)

π,0 (z) gets simplified to
∏n−1
k=0

〈
Ŵk(z)

〉
. Remembering that Ŵ (z) =

〈
Ŵn(z)

〉
,

P̂(z) =
〈
P̂n(z)

〉
leads (in accordance to 3.19) to

〈ρ̂n(z)〉 = P̂(z)Ŵn(z)ρ0. (5.72)

With the short hand notation

Pα(z) :=

〈
1

z + Γα

〉
,Wα(z) :=

〈
Γα

z + Γα

〉
, (5.73)
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the exception value for the propagator becomes

P̂(z) =

〈[
z − L(n)

0

]−1
〉

=

 PL(z) 0
WL(z)PR(z) PR(z)

,

 (5.74)

by inverting the matrix. With a simple matrix multiplication one gets

Ŵ (z) =
〈
J (n)P̂n(z)

〉
= WL(z)WR(z)

(
1 1

WL(z)

0 0

)
5 (5.75)

⇒ Ŵn(z) = (WL(z)WR(z))n
(

1 1
WL(z)

0 0

)
. (5.76)

Thus,

〈ρ̂n(z)〉 = P̂(z)Ŵn(z)ρ0 = WL(z)WR(z))n

(
PL(z) PL(z)

WL(z)

PR(z)WL(z) PR(z)

)
ρ0. (5.77)

According to 〈ρ̂χ(z)〉 =

〈 ∞∑
n=0

ρ̂n(z)einχ

〉
one can use the scalar version of the

geometric series by regarding that Ŵ0(z) = 1 and derive

〈ρ̂χ(z)〉 =
1

1− eiχWL(z)WR(z)

(
PL(z) PL(z)

WL(z)

PR(z)WL(z) PR(z)

)
ρ0 −

(
0 PL(z)

WL(z)

0 0

)
ρ0.

(5.78)

The second term does not depend on χ and has no influence on the moments.
At this point it can be remarked that it is a easy to show that the general

formalism with P̂(z)Ĝχ(z) = P̂(z)
(

1− eiχŴ (z)
)−1

leads to the same result.

5.2.2 Current

For this subsection we will make use of the short hand notation

ρ̂0,SD(z) =

(
PL(z) PL(z)

WL(z)

PR(z)WL(z) PR(z)

)
ρ0. (5.79)

Thus, the χ-dependent part of the Moment Generating Function reads

M̂(iχ) =
1

1− eiχWΠ(z)
Trρ̂0,SD(z) + const., (5.80)

where WΠ(z) = WL(z)WR(z).

5Ŵ (z) 6= 1− zP̂(z) as in the Tunneling Junction example
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Consequently, the first four moments read

m̂1(z) =
WΠ(z)

(WΠ(z)− 1)2
Trρ̂0,SD(z) (5.81)

m̂2(z) =− WΠ(z)(WΠ(z) + 1)

(WΠ(z)− 1)3
Trρ̂0,SD(z) (5.82)

m̂3(z) =
WΠ(z)

(
WΠ(z)2 + 4WΠ(z) + 1

)
(WΠ(z)− 1)4

Trρ̂0,SD(z) (5.83)

m̂4(z) =− WΠ(z)
(
WΠ(z)3 + 11WΠ(z)2 + 11WΠ(z) + 1

)
(WΠ(z)− 1)5

Trρ̂0,SD(z). (5.84)

In section 3.3.5 the difficulties of the Cumulant Generating Function were al-
ready discussed. Of course on could use the scheme, proposed in [Flindt et al.,
2010b] and examine the eigenvalues of Ŵ (z) or rather M̂(z) . The explicit
calculation of the trace Trρ̂0,SD(z), an explicit expression for the first moment,
leads to

m̂1(z) = WR(z)
PL(z) + PR(z)WL(z)

(WL(z)WR(z)− 1)2
(ρ00WL(z) + ρ01). (5.85)

Using the norm of the density matrix (1 = ρ00 + ρ01) and WL(z) = 1− zPL(z)
and the same for WR(z) leads to

m̂1(z) =
zPR(z)− 1

z2(zPL(z)PR(z)− PL(z)− PR(z))
+ ρ00

PL(z)(1− zPR(z))

z(zPL(z)PR(z)− PL(z)− PR(z))

⇒ m̂1(z)z2 =
(zPR(z)− 1)(zPL(z)ρ00 − 1)

PL(z) + PR(z)− zPL(z)PR(z)
. (5.86)

For the long-time limit a series expansion for PR(z) is done that means

PL(z) =

〈
1

ΓL

〉
− z
〈

1

ΓL2

〉
+ z2

〈
1

ΓL3

〉
+ O3(z), (5.87)

which can be rewritten to

PL(z) = 〈τL〉 − z
〈
τ2
L

〉
+ z2

〈
τ3
L

〉
+ O3(z) (5.88)

(5.89)

by using (4.7) and the same procedure for PL(z) .

Inserting this into (5.86) leads, after some sorting 6, to

current Single Dot

�



�
	〈I∞〉 = lim

z→0
z2m̂1(z) =

1

〈τL〉+ 〈τR〉
. (5.90)

That means that the average of the current in the long-time limit is related to
the inverse of the sum of the waiting times. The comparison to the clean case
shows that the former equation

with I∞,cln = 1
1
ΓL

+ 1
ΓR

= ΓLΓR
ΓL+ΓR

is the known result [Emary, 2009].

6Mathematica is quiet helpful here
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Waiting times or tunneling rates?

Regarding the experiment there is no big difference between talking about tun-
neling rates or waiting times, because both values can be measured in principal.

Even so there are two essential advantages of using waiting times instead of
tunneling rates.

• The formular looks easier (even for the clean case)

• The mean of the average long-time current for random rates does only
depend on the mean of the waiting time distribution

One can spend some effort on investigating how systems with the same mean
rates behave. Everything that is to be done for that, is to compare 1

〈ΓL,R〉 to〈
τL,R

〉
. According to definition 5.26 the relation reads〈

τL,R
〉

=
1 + αL,R
〈ΓL,R〉

(5.91)

with α ≥ 0, which was discussed for the Tunneling Junction. The parameter α
can be derived directly from the PDF.

5.2.3 Fano factor

Inserting the definition of WL(z),WR(z) to the general formula for m̂2(z) leads
to

m̂2(z) =
(PR(z)z − 1)

(
PL(z)PR(z)z2 − z(PL(z) + PR(z)) + 2

)
(PL(z)ρ00z − 1)

z3(PL(z)(−PR(z))z + PL(z) + PR(z))2
.

(5.92)

A Taylor Series Expansion in first order around z = 0 yields

PL(z) = 〈τL〉 − z
〈
τ2
L

〉
+O

(
z2
)

(5.93)

PR(z) = 〈τR〉 − z
〈
τ2
R

〉
+O

(
z2
)

(5.94)

with 〈τΣ〉 = 〈τR〉+ 〈τL〉. Equation (5.92) becomes

m̂2(z) =
2

〈τΣ〉2z3
+

4
(〈
τ2
R

〉
+
〈
τ2
L

〉)
− 3〈τR〉2 − 〈τL〉2 − 2ρ00〈τL〉(〈τR〉+ 〈τL〉)

〈τΣ〉3z2
+O

(
1

z

)
.

(5.95)

The Inverse Laplace Transform (LT
z→t
−1 ) in the time-domain gives

m2 =
t2

〈τΣ〉2
+

4t
(〈
τ2
R

〉
+
〈
τ2
L

〉)
− 3t〈τR〉2 − t〈τL〉2
〈τΣ〉3

− 2tρ00

( 〈τL〉(〈τR〉+ 〈τL〉)
〈τΣ〉3

)
.

(5.96)

That leads to the Fano factor for t→∞�
�

�

〈F∞〉 = lim

t→∞

m2(t)−m2
1(t)

m1(t)
=

2
〈
τ2
L

〉
− 〈τL〉2 + 2

〈
τ2
R

〉
− 〈τR〉2

(〈τR〉+ 〈τL〉)2
. (5.97)
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There are two useful forms of representations for the Fano factor. The form
above (5.97) can be called moment form, because the Fano factor is a function
of the raw moments of the distribution of waiting times there. The other useful
representation is the representation in terms of central moments, hence is can
be called central moment form.

Using theorem 5 one can express 5.97 via

〈F∞〉 =

〈
τ2
L

〉
+ Var(τL) +

〈
τ2
R

〉
+ Var(τR)

(〈τR〉+ 〈τL〉)2
. (5.98)

It can be shown that the Fano factor is greater than one if the following inequal-
ity is valid.

lim
t→∞

m2(t)−m2
1(t)

m1(t)
> 1⇔

〈
(τL − 〈τL〉)2

〉〈
(τR − 〈τR〉)2

〉
> 〈τL〉〈τR〉. (5.99)

It is easy to see that the Fano factor is greater than one if the product of the
variance is greater than the product of the expectation value. This is an intuitive
result. The smallest, possible Fano factor occurs in the clean case. This becomes
obvious by regarding equation (5.98) and the fact that the variance is always
positive.

f ≥ 1

2
(5.100)

The prove of the inequality (5.100) is basic math and can be found in the
appendix (compare theorem 6 p. 128).

5.2.4 Clean limit

In the following subsection the clean limit, which reproduces the known results,
is discussed. For the clean limit with

〈τL〉 = Γ−1
L , 〈τR〉 = Γ−1

R (5.101)

〈τΣ〉 = Γ−1
L + Γ−1

R

(〈
τ2
R

〉
+
〈
τ2
L

〉)
= Γ−2

L + Γ−2
R , (5.102)

this leads to

F∞,cln =
Γ2
L + Γ2

R

(ΓL + ΓR)2
. (5.103)

This is in accordance to [Emary, 2009, 8.34]. Using waiting times instead of
tunneling rates leads to

F∞,cln =
〈τL〉2 + 〈τR〉2
(〈τL〉+ 〈τR〉)

2 . (5.104)
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Thus, the random Fano factor can be rewritten to

F∞,cln =
2
〈
τ2
L

〉
− 〈τL〉2 + 2

〈
τ2
R

〉
− 〈τR〉2

(〈τR〉+ 〈τL〉)2
(5.105)

=
2
〈
(τL − 〈τL〉)2)

〉
+ 〈τL〉2 + 2

〈
(τR − 〈τR〉)2)

〉
+ 〈τR〉2

(〈τR〉+ 〈τL〉)2
(5.106)

=
〈τL〉2 + 〈τR〉2
(〈τL〉+ 〈τR〉)

2︸ ︷︷ ︸
F∞,cln

+2
〈(τL + 〈τL〉〉+

〈
(τR − 〈τR〉)2)

〉
(〈τL〉+ 〈τR〉)

2 . (5.107)

This can bee seen as third sensible way of representation of the Fano factor and
is very similar to the central moment representation.

5.2.5 Steady state

In the case of random rates the description steady state might be misleading.
However, investigating the expectation value of the density matrix makes the
term ’steady state’ well defined. A simple calculation leads to the following
result.

〈ρ(t→∞)〉 = lim
z→0

z
∞∑
n=0

〈ρ̂n(z)〉 (5.108)

= lim
z→0

z
∞∑
n=0

L(z).W (z)n.ρ0 (5.109)

= lim
z→0

zL(z).

( ∞∑
n=0

W (z)n

)
.ρ0 (5.110)

7 = lim
z→0

zL(z).

(
W (z)

WL(z)WR(z)−WL(z)2WR(z)2

)
.ρ0 (5.111)

= lim
z→0

1

PL(z) + PR(z)

(
PL(z)
PR(z)

)
(5.112)

=
1

〈τΣ〉

(
〈τL〉
〈τR〉

)
. (5.113)

This result was expected analogically to the clean case, where the steady state
was

ρstat =
1

ΓL + ΓR

(
ΓL
ΓR

)
[Emary, 2009, 7.123], (5.114)

7geometric series
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5.2.6 Simulation

As in the former sections all results were derived analytically, there is no need
for a numeric simulation. Nevertheless, a numerical simulation illustrates the
analytical results. In the following a Single Quantum Dot with uniform dis-
tributed random rates is regarded. The mean of the distribution was set to
⊥ = 5 and the width of the distribution σ was set to 4. With a discrete time
step approach (a detailed explication follows in section 7.1) and the step width
of ∆t = 1

100 (figure 5.6) was obtained.

In the upper left picture the dot occupation is visualized for one random sample.
In the upper right picture one can see the number of transmitted particles. The
particle is counted, when the dot occupation changes from full to empty. By
this change new random rates were generated and displayed in the second row.
The corresponding waiting times are in the third row. The distribution of this
rates or waiting times is visualized in figure 5.7. In the lower left picture the
current is visualized. The blue line indicates the moving average current for the
real current. The green line indicates the current, which is calculated by using
the long-time current formula by the moving average for the waiting times. The
red line indicates the same for the tunneling rates. In the lower right picture

one can see the same, where the rates were time weighted8.

8It has to be discussed, if this makes sense.
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Figure 5.6: Simulation: Single dot with ⊥ = 5, σ = 4. Complete description see text.
last row: blue simulated current; red wrong current expressed by average
tunneling rates; green expected current by making use of the waiting time
formula
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Figure 5.7: Simulation: Histogram ⊥ = 5, σ = 4
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One can see that no way of calculation leads to good results for the first few time
steps. Regarding longer times and replacing the moving average to the average
of all recent events leads to figure 5.8. In that situation it becomes clear that
the calculation in terms of waiting times leads to the correct result (green line).
For comparison the wrong current, which is derived by replacing the tunneling
rates by their averages is printed in red.
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Figure 5.8: Simulation: long-time current ⊥ = 5, σ = 4,∆t = .01.
blue simulated current
red wrong current expressed by average tunneling rates
(green expected current by making use of the waiting time formula
Further description see text.
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5.3 Transitions in a ring

It could be seen that the results for the Tunneling Junction and the Single
Quantum Dot are congruent. Hence, this class of setups is being extended to a
finite numbers of sequential jumps. At this point it can be remarked that this
system has no essential coherent states.

Regarding a ring with transitions between K states, 1→ 2 . . .→ K → 1 at rates

Γ
(n)
i . This setup was discussed in [Brandes, 2008, section 3.3]. The step K → 0

is interpreted as jump process and leads to a change in the rates. So Liouvillian
and jump operator read

L(n)
0 =



−Γ
(n)
1 0 0 . . . 0

Γ
(n)
1 −Γ

(n)
2 0 0

0 Γ
(n)
2 −Γ

(n)
3

...
...

. . . 0

0 0 . . . Γ
(n)
K−1 −Γ

(n)
K


,

J (n−1) =


0 0 0 . . . Γ

(n−1)
K

0 0 0 0
0 0 0 0
...

. . . 0
0 0 . . . 0 0

 . (5.115)

Listing 5.1: Sample code snipped: Generate a ring of size K with the help of our
nQME-Package

1 Needs["nQME ‘Random ‘"](* Initialize tha package *)

g[i_] := ToExpression ["\[ CapitalGamma ]" <> ToString[i]](*\]*)

Ring[k_] := ((L0 =

Normal[SparseArray [{{i_, i_} :> -g[i], {i_ , j_} /; i - j == 1 :>

g[j]}, {k, k}]];

6 J = Normal[SparseArray [{{1, k} -> g[k]}, {k, k}]];

vars = Table[g[i], {i, k}];

TraceFunction[Mat_] :=

Tr[((Mat.Normal[SparseArray [{{1} -> 1}, {k}]]))];

nQMESetL0[L0];

11 nQMESetJ[J];

nQMESetRandomVariables[vars];

nQMESetTraceFunction[TraceFunction ];

));
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According to the developed procedure (cf. chapter 3-4) the following matrices
are calculated

Ŵ (z) =
〈
Ŵn(z)

〉
=



WΠ1 WΠ2 WΠ3 . . . WΠK

0 0 0 0

0 0 0
...

...
. . . 0

0 0 . . . 0 0

 (5.116)

P̂(z) =
〈
P̂n(z)

〉
=



P1 0 0 . . . 0
W1P2 P2 0 0

W1W2P3 W2P3 P3

...
...

. . . 0
WΠ1PK
WK

WΠ2PK
WK

. . . WK−1PK PK

 (5.117)

T̂ k(z) = 〈Tnz〉 =
1

k!

(
1

1− 1
WΠ1

)k


1 WΠ2

WΠ1

WΠ3

WΠ1
. . . WK

WΠ1

0 0 0 0

0 0 0
...

...
. . . 0

0 0 . . . 0 0

 (5.118)

with Wi =
〈

Γi
z+Γi

〉
, Pi =

〈
1

z+Γi

〉
and WΠi =

∏K
j=iWj . Thus, the Moment

Generating Function reads

Moment Generating Function M̂(iχ) =

K∑
i=1

i∏
k=1

Pk

1− eiχWΠ

. (5.119)

Current and Fano factor

The current becomes �



�
	〈I∞〉 =

1

〈τΣ〉
(5.120)

with 〈τ〉Σ =
K∑
i=1

〈τ〉i, 〈τ〉i =
〈

1
Γi

〉
and the Fano factor evaluates to�

�
�
�〈F∞〉 =

K∑
i=1

(〈τi〉 − 2
〈
τ2
i

〉
)

〈τΣ〉
(5.121)

with 〈τΣ〉 =
K∑
i=1

〈τi〉, 〈τi〉 =
〈

1
Γi

〉
.

Furthermore, it can be shown that

〈F∞〉 ≥
1

K
. (5.122)
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A proof can be developed in the same style as for the Single Quantum Dot (cf.
proposition 6). One possibility is to use the multinomial coefficient (see e.g.
[Comtet, 1974]).

One can express the Fano factor in central moment representation.

〈F∞〉 =

K∑
i=1

(〈τi〉2 − 2
〈
τ2
i

〉
)

〈τΣ〉2
=

K∑
i=1

(〈τi〉2 + 2Var(τi))

〈τΣ〉2
(5.123)

Var(τi) ≥ 0, which is minimal for the clean case. Afterwards it is basic mathe-
matics to prove that ∑k

i=1 a
2
k(∑K

i=1 ak

)2 ≥
1

K
∀ak ∈ R+. (5.124)

The detailed prove is given in proposition 7.

Expressions for the higher order cumulants can be derived in the same style.
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5.4 Double Quantum Dot

In the following the Double-Quantum-Dot (DQD) is taken into account. The
Double Quantum Dot consists of two coupled Quantum Dots. In this special case
the particles can jump from one side to the other and backwards. In contrast to
the former example the Double Quantum Dot involves internal system dynamics.
This internal dynamics depends on two parameter:

• ε : specifies the difference between the energy levels of the dots

• TC : defines the strength of the coupling of the dots (Tunneling is allowed
in both directions.)

Ε

GL TC GR

µL

µR

Right

Reservoir

Left

Reservoir

Figure 5.9: Scheme of a Double Quantum Dot. A realistic view can be seen in figure
1.1.

It is simple to derive the System Hamiltonian from figure 5.10 (see also [Emary,
2009, 7.29])

HS =εL |L〉〈L|+ εR |R〉〈R| +TC(|L〉〈R|+ |R〉〈L|)
HS =

ε

2
(|L,L〉〉 − |R,R〉〉) +TC(|L,R〉〉+ |R,L〉〉) (5.125)

To write down the System Liouvillian one has to choose an appropriate base9.
As there is no coherence with the empty state |0〉, only the states |0, 0〉〉 ≡ |0〉〈0|,
|L,L〉〉, |R,R〉〉, |L,R〉〉, |RL〉〉 have to be regarded.

LS =iHS . x − i x .HS = i
∑
kij

(HSik|kj〉〉 −HSkj |ik〉〉)〈〈i, j| (5.126)

=i


0 0 0 0 0
0 0 0 TC −TC
0 0 0 −TC TC
0 TC −TC −ε 0
0 −TC TC 0 ε


|00,LL,RR,LR,RL〉〉

(5.127)

9This is required to transform the density operator (matrix) to a state of the Liouville
Space (vector). For details see appendix B.3 and notebook NB:Ham2Lio
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It has to be remarked that the first column and row of the System Liouvillian
are (as expected) empty, because the internal system dynamics does not involve
the empty state |0〉. To get rid of all the complex numbers a simple base-

GL

-GL

-TC

2TC

-2TC

Ε

-GR2

GR

-GR

TC

-GR2
-Ε

00

LL ImIm

RR

ReRe

Figure 5.10: Functional graph of Double Quantum Dot, with Re=< - real Im==-
complex part of |R〉〈L|.
There are similarities to the Single Quantum Dot. On the left lead is
exactly the same setup as in the Single Quantum Dot. So one expects
nothing new compared to the single resonant level. This is confirmed in
the calculation, where only the average waiting time from the left lead
occurs in the current. In the middle there is a system with a structural
similarity to the Single Quantum Dot if on neglects the connections to
|L〉〈L| and |R〉〈R|. The current would be equivalent to the current of
a Single Quantum Dot similar system with the pseudo Liouvillian L =(
−ΓR/2 −ΓR/2
ε −ε

)
. The current for that pseudo subsystem evaluates

(with nQME package) to 〈I∞〉 = 4ε2ΓR
(ΓR+2ε)2

.

transformation to
{|00〉〉, |LL〉〉, |RR〉〉,<|RL〉〉,=|RL〉〉} can be performed

LS =


0 0 0 0 0
0 0 0 0 2TC
0 0 0 0 −2TC
0 0 0 0 −ε
0 −TC TC ε 0


|00,LL,RR,<RL,=RL〉〉

. (5.128)

Indeed the DQD is coupled to the environment. This works equally to the
already seen Single Quantum Dot. Thus, one has a jump in process on the left
side with the Liouvillian

LL = ΓLD(jL), LR = ΓRD(jR) (5.129)
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with the left jump operator jL = |0L〉〉, jR = |R0〉〉 and the Lindblad Superoper-
ator D(j) x = j x j† − 1

2

{
x , j†j

}
. Thus, the full ’clean’ Hamiltonian reads

L =


−ΓL 0 ΓR 0 0
ΓL 0 0 0 2TC
0 0 −ΓR 0 −2TC
0 0 0 − 1

2ΓR −ε
0 −TC TC ε 1

2ΓR


10

. (5.130)

With n-dependent rates and the nQME (3.1) reads

∂tρ
(n)(t) = L(n)

0 ρ(n)(t) + J (n)ρ(n−1)(t) (5.131)

L(n)
0 = LS + Γ

(n)
L D(jL) +

Γ
(n)
R

2

{
x , jRj†R

}
J (n) = Γ

(n−1)
R jR x j†. (5.132)

Experimentally, the coupling strength is replaced through an n-dependent ver-

sion TC → T
(n)
C , although this was not derived microscopically. In matrix nota-

tion this looks like

L(n)
0 =


−Γ

(n)
L 0 0 0 0

Γ
(n)
L 0 0 0 2T

(n)
C

0 0 −Γ
(n)
R 0 −2T

(n)
C

0 0 0 −Γ
(n)
R

2 −ε
0 −T (n)

C T
(n)
C ε −Γ

(n)
R

2

 , J (n−1) =


0 0 Γ

(n−1)
R 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

(5.133)

For this example the procedure works exactly equal. As the calculation effort is
very big, this step was done by a Mathematica Program. This program executes
exactly the steps, described in chapter 4 (cf. appendix D.1, p. 147 for the source
code).

Figure 5.10 visualizes the Liouvillian for the clean case.

Constant rates

With this Mathematica Package the known results [Stoof and Nazarov, 1996,
Gurvitz and Prager, 1996] were reproduced. The handling of the Mathematica
Package is simple. Inserting the Liouvillian and jump operator leads to long-
time current, Fano factor and higher cumulants. Which variables are said to be
random, can be specified individually. The example, which was used to generate
the findings below, can be found in appendix D.2, p.149.

For the current one derives

〈I∞〉 =

(
τL + τR

(
ε2τ2

T + 2
)

+
τ2
T

4τR

)−1

. (5.134)

10From now on |00, LL,RR,<RL,=RL〉〉 is assumed as default base.



76 CHAPTER 5. SIMPLE EXAMPLES

In the standard tunneling rates representation this reads

〈I∞〉 =
4ΓLΓRTC

2

ΓL (ΓR2 + 8TC2 + 4ε2) + 4ΓRTC2
. (5.135)

This current looks slightly different from the examples investigated before. A
composition of two Single Quantum Dots with unidirectional tunneling would
have a waiting time in the middle of

τM = τR

(
1 + ε2τ2

T +

(
τT
2τR

)2
)
. (5.136)

The Fano factor becomes

〈F∞〉 =
16τ2

Lτ
2
R + 8τ2

Rτ
2
T

(
12ε2τ2

R − 1
)

+ τ4
T

(
4ε2τ2

R + 1
)

2 + 64τ4
R

(4τR (τL + τR (ε2τ2
T + 2)) + τ2

T ) 2
(5.137)

or

=
ΓL

2
(
ΓR

4 − 8ΓR
2
(
TC

2 − ε2
)

+ 16
(
4TC

4 + 6TC
2ε2 + ε4

))
+ 16ΓR

2TC
4

(ΓL (ΓR2 + 8TC2 + 4ε2) + 4ΓRTC2)2

(5.138)

with tunneling rates. The long-time limit for c3(t)
c1(t) is a rather long expres-

sion. Therefore, nominator and denominator were written down apart from
each other.

lim
t→∞

c3(t)

c1(t)
Z4 = ΓL

4
(
ΓR

8 + 8ΓR
6
(
2ε2 − 5TC

2
)

+ 96ΓR
4
(
8TC

4 − TC2ε2 + ε4
))

− 128ΓR
2ΓL

4
(
32TC

6 + 48TC
4ε2 − 9TC

2ε4 − 2ε6
)

+ 256ΓL
4
(
16TC

8 + 32TC
6ε2 + 48TC

4ε4 + 14TC
2ε6 + ε8

)
− 8ΓL

3ΓRTC
2
(
ΓR

6 + 12ΓR
4
(
ε2 − TC2

)
+ 48ΓR

2
(
2TC

2ε2 + ε4
)

+64
(
8TC

6 + 24TC
4ε2 + 9TC

2ε4 + ε6
))

+ 96ΓL
2ΓR

2TC
4
(
ΓR

4 + 8ΓR
2
(
ε2 − TC2

)
+ 16

(
4TC

4 + 6TC
2ε2 + ε4

))
− 128ΓLΓR

3TC
6
(
ΓR

2 + 8TC
2 + 4ε2

)
+ 256ΓR

4TC
8 (5.139)

with the denominator Z = ΓL
(
ΓR

2 + 8TC
2 + 4ε2

)
+ 4ΓRTC

2.
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5.4.1 Moment Generating Function

Assuming that the system starts in an empty state, what means that ρ0 =
|0〉〈0|,11the moment generating function can be calculated as12

M̂(iχ) =
−
〈

ΓL
ΓL+z

〉
ΓL

〈
TC

2
〈

ΓR+2z
(ΓR+2z)2(z(ΓR+z)+4TC2)+4zε2(ΓR+z)

〉
ΓR

〉
TC

eiχ
〈

ΓL
ΓL+z

〉
ΓL

〈
TC2
〈

ΓR(ΓR+2z)
(ΓR+2z)2(z(ΓR+z)+4TC2)+4zε2(ΓR+z)

〉
ΓR

〉
TC − 1

4

+

〈〈
(ΓR+2z)((ΓR+z)(ΓR+2z)+4TC

2)+4ε2(ΓR+z)

(ΓR+2z)2(z(ΓR+z)+4TC2)+4zε2(ΓR+z)

〉
ΓR

〉
TC − 1

4

〈
1

ΓL+z

〉
ΓL

eiχ
〈

ΓL
ΓL+z

〉
ΓL

〈
TC2
〈

ΓR(ΓR+2z)
(ΓR+2z)2(z(ΓR+z)+4TC2)+4zε2(ΓR+z)

〉
ΓR

〉
TC − 1

4

.

(5.140)

The calculation is quite long. This is similar to the case of the Single Quantum
Dot. Here, this calculation was done with the help of the Mathematica Program
(cf. appendix (D.1), p.147). This lengthy expression can be represented in
shorter form �

�
�

M̂(iχ) =

〈AR,T (z)〉 −WL(z)〈BR,T (z)〉 − 1
4PL(z)

eiχWL(z)〈ΓRBR,T (z)〉
(5.141)

by the use of

AR,T (z) ≡ (ΓR + 2z)
(
(ΓR + z)(ΓR + 2z) + 4TC

2
)

+ 4ε2(ΓR + z)

(ΓR + 2z)2 (z(ΓR + z) + 4TC2) + 4zε2(ΓR + z)
(5.142)

BR,T (z) ≡TC2 ΓR + 2z

(ΓR + 2z)2 (z(ΓR + z) + 4TC2) + 4zε2(ΓR + z)
. (5.143)

In contrast to the former examples, the Double Quantum Dot involves terms
of the form 〈f(ΓR, TC)〉ΓR,TC . Consequently, the series expansion of the kernel
becomes more complicated.

11This is a sensitive assumption, because the long-time values should not depend on the
initial state. The Moment Generating Function was also calculated with an arability initial
density operator. But this a very long equation, where the effort to print out the equation
in LATEX is much larger than the effort to calculate. However, if one is interested in the full
form, one can use the Mathematica Package and enjoy it on the screen.

12Notation advice: 〈y〉x means exception value of expression y here with respect to random
variable x.
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5.4.2 Current

In section 5.4 the clean limit for the Double Quantum Dot was discussed. It
was found out that the current in the long-time limit, which we call I∞,cln, is
given by

I∞,cln ≡ 〈I∞〉(τ2
t , τL, τR) =

(
τL + τR

(
ε2τ2

T + 2
)

+
τ2
T

4τR

)−1

. (5.144)

We remind that this result can be obtained by taking (5.135) and replace ΓL →
1
τL
,ΓR → 1

τR
, TC → 1

τT
. Now we expect the tunneling rates on the left side

ΓL and on the right side ΓR, as well as the coupling in the middle TC , to be
random. Furthermore, it is assumed that the distribution of the waiting times
is known. (The expectation values of the tunneling rates 〈Γα〉 can be calculated
via the relationship (4.8).) The random results include the clean limit, if a delta
distribution is assumed as Probability Density Function (PDF). The calculation
with random ΓL,ΓR and TC leads to

〈I∞〉 ≡ 〈I∞〉(
〈
τ2
T

〉
, 〈τL〉, 〈τR〉, 〈ΓR〉) =

(
〈τL〉+ 〈τR〉

(
ε2
〈
τ2
T

〉
+ 2
)

+ 1
4 〈ΓR〉

〈
τ2
T

〉)−1
.

(5.145)

One remarks that there is only one additional parameter (〈ΓR〉) in the random
current. The concrete realization of the PDF for ΓL and TC do not affect the
result. Only the expectation value of τL (namely 〈τL〉) and the second moment
of τT (namely

〈
τ2
T

〉
) influence the current. This is equivalent to the situation in

the former sample setups. For τR the situation looks slightly different. In this
context two properties of the distribution of τR affect the current (〈τR〉, 〈ΓR〉).
In the classical case the product of these values would be 1. For a general PDF
this does not hold true. Therefore, we introduce a parameter α, which is defined
via

〈τR〉〈ΓR〉 = 〈τR〉
〈

1

τR

〉
=: 1 + α. (5.146)

Now it is possible to interpret (5.145) as function of α

〈I∞〉(
〈
τ2
T

〉
, 〈τL〉, 〈τR〉, α) := 〈I∞〉(

〈
τ2
T

〉
, 〈τL〉, 〈τR〉,

1 + α

〈τR〉
). (5.147)

According to that, the relationship between random and clean current can be
written as�

�
�



I∞,cln
〈I∞〉

= 1 + α
τ2
T

4τR (τL + τR (ε2τ2
T + 2)) + τ2

T

≥ 1. (5.148)

That means that the current in the clean case cannot be boosted by a random
distribution if the corresponding parameter are the same, i.e. (τL = 〈τL〉, τR =
〈τR〉, τT =

〈
τ2
T

〉
). Regarding for example the Maxwell Distribution with the

PDF f(σ) =

√
2
π x

2e
− x2

2σ2

σ3 . It is connected with some mathematical effort to
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calculate 〈τR〉 = 2
√

2
πσ and 〈ΓR〉 =

√
2
π

σ . The use of Mathematica helps to save

some time. With these quantities it is simple to derive

〈τR〉〈ΓR〉 =
4

π
⇒ α =

4

π
− 1. (5.149)

Plotting that, leads to figure 5.11, where one can examine that the difference
between clean and random current is especially relevant in the case for small ε.
This is in accordance with (5.148).

-10 -5 0 5 10
0.0

0.1

0.2

0.3

0.4

0.5

Ε

<
I ¥

Ε
>

Long time current DQD
Α=-12
Α= 0

Α= 4Π-1

Α= 10

Figure 5.11: random (red) and clean current (blue) with 〈τL〉 = 1,
〈
τ2
T

〉
= 1, 〈τR〉 =

1/4 for the Maxwell Distribution and a pathologic, negative value for α.
In the real world the current will always decay. The parameter α < 0
(the gray line) does not occur in reality.

Further examples are discussed below in connection with the Fano factor.

5.4.3 Fano factor

Taking (5.137) and replacing ΓL → 1
τL
,ΓR → 1

τR
, TC → 1

τT
leads to

F∞,cln =
16τ2

Lτ
2
R + 8τ2

Rτ
2
T

(
12ε2τ2

R − 1
)

+ τ4
T

(
4ε2τ2

R + 1
)

2 + 64τ4
R

(4τR (τL + τR (ε2τ2
T + 2)) + τ2

T ) 2
, (5.150)

which can be rewritten as

F∞,cln =
16τ2

L + 16ε4τ2
Rτ

4
T + 96ε2τ2

Rτ
2
T +

τ4
T

τ2
R

+ 64τ2
R + 8ε2τ4

T − 8τ2
T(

4τL + 4τR (ε2τ2
T + 2) +

τ2
T

τR

)
2

. (5.151)

In the random case the Fano factor evaluates to

〈F∞〉/〈I∞〉2 = 2
〈
τ2
L

〉
− 〈τL〉2 − 〈τR〉2

(
ε2
〈
τ2
T

〉
+ 2
)2

− 1
2 〈ΓR〉〈τR〉

〈
τ2
T

〉 (
ε2
〈
τ2
T

〉
+ 2
)

+ 2
〈
τ4
T

〉 (〈
Γ−2
R

〉
+ 8ε2

)
+ 2
〈
τ2
R

〉 (
ε4
〈
τ4
T

〉
+ 5ε2

〈
τ2
T

〉
+ 4
)

+
〈
τ2
T

〉 (
8− 〈ΓR〉2

〈
τ2
T

〉)
. (5.152)
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This is a quiet long expression. The most interesting observations can be made
in the right lead. Therefore, one takes the clean limit for the left rate

〈
τ2
L

〉
= τL

and the coupling
〈
τ2
T

〉
= TC

−1 ≡ τT . In addition to that, it is reasonable to
make use of the parameters as already done in the former section.

Therefore, we introduce the parameters α, β, which are defined via

〈τR〉〈ΓR〉 = 〈τR〉
〈

1

τR

〉
=: + α (5.153)

〈
τ2
R

〉〈
Γ−2
R

〉
=
〈
τ2
R

〉〈 1

τ2
R

〉
=:β + (1 + α)2. (5.154)

The definition of β is a guess. The attempt to improve this parameters ended
in negative success. Especially the attempt to get a short expression for the
Fano factor, by choosing

〈
τ2
R

〉〈
Γ−2
R

〉
=: (1 + 1

2β + α + 1
2α

2), does not produce
physically reasonable independent parameter. In that case a negative Fano
factor can be generated for a combination of non-negative parameters, which
is not the desired behavior. A motivation for the guess (5.154) is that in the
clean limit β should become 0 and that this expression is linked to the square
of (1 +α). However, it is difficult to show that this is a good parameter, as long
as there is no formal criteria for evaluating a parameter. The positivity of β is
proved in the appendix (A.1.1 p. 129).

The full Fano factor reads

〈F∞〉 =
16〈τR〉4

(
ε4
(
−
〈
τ2
T

〉
2
)

+ 2ε4
〈
τ4
T

〉
+ 6ε2

〈
τ2
T

〉
+ 4
)

(4〈τR〉 (〈τL〉+ 〈τR〉 (ε2〈τ2
T 〉+ 2)) + (α+ 1)〈τ2

T 〉)
2

+
2(α(α+ 2) + β + 2)

〈
τ4
T

〉
− (α+ 1)2

〈
τ2
T

〉
2

(4〈τR〉 (〈τL〉+ 〈τR〉 (ε2〈τ2
T 〉+ 2)) + (α+ 1)〈τ2

T 〉)
2 (5.155)

− 8〈τR〉2
(
2〈τL〉2 − 4

〈
τ2
L

〉
+
〈
τ2
T

〉 (
(α+ 1)ε2

〈
τ2
T

〉
+ 2α− 20νε2 + 1

))
(4〈τR〉 (〈τL〉+ 〈τR〉 (ε2〈τ2

T 〉+ 2)) + (α+ 1), 〈τ2
T 〉)

2

+
8〈τR〉2

(
2ε2
(
2νε2 + 1

) 〈
τ4
T

〉
+ 16ν

)
(4〈τR〉 (〈τL〉+ 〈τR〉 (ε2〈τ2

T 〉+ 2)) + (α+ 1), 〈τ2
T 〉)

2

which becomes in the half clean limit a function of (α, β, ν, τL, τ
2
T , 〈τR〉) which

can be displayed simply by multiplying with the squared current.

〈F∞〉〈I∞〉2 =α

(
1

8
ατ2

T

(
−8 +

(
−4ε2 +

1

τ2
R

)
τ2
T

)
+ α

τ4
T

16τ2
R

)
+ β

τ4
T

8τ2
R

+ 2ν
(
4 + 5ε2τ2

T + ε4τ4
T

)
(5.156)

+ τ2
L +

3τ4
T

16τ2
R

+
1

2
τ2
T

(
−1 + ε2τ2

T

)
+ τ2

R

(
4 + 6ε2τ2

T + ε4τ4
T

)
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The full form reads

〈F∞〉 =
−2ατ2

T

(
ε2τ2

T + 2
)

+ β
τ4
T

〈τR〉2 + 8ν
(
ε4τ4

T + 5ε2τ2
T + 4

)
(
τL + τ2

T

(
α+1

4〈τR〉 + ε2〈τR〉
)

+ 2〈τR〉
)2

+
4τ2
L +

τ4
T (4ε2〈τR〉

2+1)2

4〈τR〉2 + 2τ2
T

(
12ε2〈τR〉2 − 1

)
+ 16〈τR〉2(

τL + τ2
T

(
α+1

4〈τR〉 + ε2〈τR〉
)

+ 2〈τR〉
)2 . (5.157)

The form above allows to describe the Fano factor with three additional param-
eters. Setting all that parameters to zero leads to the clean case. The restriction
that α is always positive was already discussed before. Even though, the exact
mathematical prove is an open point. There are strong arguments that almost
every PDF leads to a positive value of alpha. From the physical point of view,
negative alpha parameters do not make sense, as this would be in connection to
a raise of the current. The parameter ν is the variance of the distribution. It
is well known that the variance is always positive. The parameter β has never
been discussed before. A prove of the positivity of beta can be imagined in the
same style as the prove for the positivity of α. Due to the fact that even the
exact prove for α is a mathematically project, no attempt of proving the posi-
tivity of β is done in this thesis. In the following it is simply assumed that all
three parameters are positive. The sensitivity of that assumption is underlined
by the fact that it holds true for all investigated PDFs.

5.4.4 Distributions

As a first step some combinations for the parameter α, β and ν are plotted
to demonstrate possible situation. In a second step the situation is discussed
for some sample distributions. In the following picture on can see how the
parameters influence the Fano factor. The dashed blue line is the reference case
for the clean limit. For that case the accordance to [Pöltl, 2008] was verified.

In figure 5.12 the α-dependence of Fano factor is visualized. It is to observe
that the Fano factor decays if α raises. For a certain value of α the Fano factor
at ε = 0 gets minimal and the minima split of.

Afterwards, the minimal points for the Fano factor move away from ε = 0. The
zero of ∂α〈F∞〉(ε = 0) is

α =
8τ2
R

(
τ2
L + 2τLτR + 8

(
ν + τ2

R

))
− 2τR (τL + 2τR) τ2

T + (1 + β)τ4
T

2τR (τL + 4τR) τ2
T

. (5.158)

For the parameter β the situation is different. As one can see in figure 5.14, the
growth of parameter β is connected to a growth in the Fano factor.

The investigation of the parameter ν (see figure 5.15) does not lead to astonish-
ing result. This is intuitive if one thinks about the current fluctuation that is
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Figure 5.12: α-dependence of Fano factor for certain parameter
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Figure 5.13: α-dependence of the Fano factor for ε = 0 with parameters from figure
5.12

implied by the randomness of the rates. Combining this parameters in arbitrary
way leads to the astonishing investigation that the Fano factor can decay (see
e.g. figure 5.16). It is not to estimate that with the introduction of random
tunneling rates the Fano factor can raise, except for the case that the current
is suppressed. Therefore, both parameters, Fano factor and current, have to be
investigated together.

On the following six pages three PDFs are investigated in detail. The results
were obtained by the Mathematica Program in appendix E. Thus, this analysis
can be done for all normed positive PDF, where the integrals for the first two
negative moments and the variance can be defined. Interesting parameters can
be found by an user interactive formula, where the parameters can be set with
sliders. Unfortunately, this cannot be put in a portable document or a paper
version up to now.

The random Fano factor had originally nine parameter (〈τL〉,
〈
τ2
L

〉
,
〈
τ2
T

〉
,
〈
τ4
T

〉
,

〈τR〉, α, β, σ, ε). By regarding a given PDF the number of parameters reduces to
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Figure 5.14: β-dependence of Fano factor
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Figure 5.15: ν-dependence of Fano factor

two plus the number of parameters of the PDF (p1, ps, . . . pM ). Thus, there are
three plus M parameters, namely 〈τL〉, 〈τT 〉, ε, pi in the investigated situations
M = 1 for the Maxwell Distribution andM = 2 for the other distributions. Even
four parameters are hard to handle. Similar to [Pöltl, 2008], we fix 〈τL〉 = 1
and regard the ratio TC/ΓL

13. As the other distributions discussed here, have
one more parameter, we have to eliminate a further parameter to display the
information within the three dimensions of space. Therefore, we restrict the
situation to two setups.

Situation a 〈τL〉 = 1, 〈τT 〉 = 1

In that situation the clean case long-time Fano factor is always smaller
than one and decays in the region of ε = 0 with a global minimum at
ε = 0. For large values lim|ε|→∞ F∞,cln = 1.

Situation b 〈τL〉 = 1, 〈τT 〉 = 5

In that situation the Fano factor has two additional maxima and is greater
than one at the maxima and smaller than one for the minimum. For large

13[Pöltl, 2008] used TC/ΓR. But by doing that interesting information about the current is
lost. In our case, where the rate on the right lead is n-dependent, this might be of interest.
(For comparison with the same was also calculated with TC/ΓR for the clean case. The
comparison was successful.)
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Figure 5.16: β-dependence of Fano factor for some other values of α,VarτR = ν

values of ε the Fano factor converges to {1|}14. A detailed discussion is to
find in [Gurvitz and Prager, 1996].

Maxwell Distribution

As an example for a distribution with only one parameter, we take the Maxwell
Distributions. As the treatment of many degrees of freedom is not always simple,
this is a comfortable starting point.

As a first step we modify the normal Maxwell Distribution, which is given

by f̃(σ) =

√
2
π x

2e
− x2

2σ2

σ3 and change the parameter σ by a multiplication with
a constant value. In that way this parameter takes the value of the average
waiting time and the modified PDF reads

f(σ) =
32x2e−

4x2

πσ2

π2σ3
. (5.159)

With the Mathematica Program we obtain the values of interest:

〈τR〉 ≡ σ,
〈
τ2
R

〉
=

3πσ2

8
(5.160)

〈ΓR〉 =
4

πσ
,

〈
ΓR

2
〉

=
8

πσ2
(5.161)

α =
4

π
− 1, β = 3− 16

π2
, ν =

1

8
(3π − 8)σ2 (5.162)

Thereby, no further limitation to the waiting times was made. The only restric-
tion is, that the waiting times cannot be ≤ 0. Due to the physical interpretation,
this is fulfilled automatically.

An interesting observation is that α, β are constant in that case. This is visual-
ized in figure 5.17. Only the variance is dependent of the parameter σ = 〈τR〉.

14A gentle tool are surreal numbers [Knuth, 1974]. e.g. {|1} < 1 < {1|}
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Figure 5.17: left: α-parameter green dashed, 〈τR〉 blue dotted and solid red line 1
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.
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In that case current and Fano factor read〈
IMW
∞

〉
(ε, σ, τT , τL) =

πστL
πσ (τL + σ (ε2 + 2)) + τ2

T

(5.163)〈
FMW
∞

〉
(ε, σ, τT , τL) =

π2
(
τ2
L

(
4σ2 + 30πσ4ε2

)
+ τ4

L

(
6πσ4ε4 + 8σ2ε2 + 3

)
+ 24πσ4

)
8 (τ2

L (πσ2ε2 + 1) + πσ (2σ + τT )) 2

+ 1− 2
(
τ2
L

(
πσ2ε2 + 1

)
+ 2πσ2

)
τ2
L (πσ2ε2 + 1) + πσ (2σ + τT )

. (5.164)

A formal analysis of this expression leads to the following observations. The
boundary values evaluate to

lim
σ→0

〈
IMW
∞

〉
(ε, σ, τt, τL) = lim

σ→∞

〈
IMW
∞

〉
(ε, σ, τt, τL) = 0 (5.165)

lim
σ→0

〈
FMW
∞

〉
(ε, σ, τt, τL) =

3π2

8
− 1 (5.166)

lim
σ→∞

〈
FMW
∞

〉
(ε, σ, τt, τL) =

3π
(
τL

4ε4 + 5τL
2ε2 + 4

)
4 (τL2ε2 + 2) 2

− 1. (5.167)

Physically spoken that mean that very small waiting times, which corresponds
to infinite rates, leads to a fixed Fano factor. However, at this point the current
is zero. Therefore, the relevance of that information is little. In addition to that
the Fano factor has three zeros. The interesting zero is at σ = 0. The other two
zeros appear if the Fano factor has an local maximum at σ = 0.

As no interesting results are expected, the exact behavior of this extrema is
not treated in detail. For larger values the position of these extreme values is
far away from ε = 0, so that the current at that place is very little. A brief
discussion is to find in the Mathematica Notebook NB:autoMW.

The major interest is in the extreme point at σ = 0. In figure 5.18 the current
and Fano factor are plotted for ε = 0. For the two situations a,b we investigate
this in detail.

Plotting the Fano factor in a normal (non logarithmic) scale leads to 5.19. In
that picture some points are exemplary chosen and then plotted for a range
from −10 . . . 10.
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Figure 5.18: Whole range of the Fano factor and Current in logarithmic scale. The
Fano factor for a large waiting time or tunneling rate on the right lead

〈τR〉 = σ → 0 : 〈F∞〉 = 3π2

8
−1 and respectively σ →∞ : 〈F∞〉 = 3π

4
−1.

The current gets 0 as well. The red line is Fano factor or current and the
dotted blue line is its second derivative. In the upper right picture the
second derivative has been scaled at factor 10.
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Figure 5.20: Fano factor for case a and b for some exemplary values compare to 5.19
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Figure 5.21: Uniform Distribution
left: α-parameter green dashed, 〈τR〉 blue dotted, solid red line 1

〈ΓR〉
.

center: β-parameter green dashed,
〈
τ2
R

〉
blue dotted, solid red line 1

〈ΓR2〉 .
right: α blue dotted line, β red line, variance (ν) green dashed line
For a Uniform Distribution with mean at 1 and width σ. The maximum
width is σMax < 2 (σMax − σ = 2 means sharp delta distribution at
τR = 1).
α becomes (linear) infinite, β gets (exponential) infinite and ν gets the
constant value 1

3
for σMax − σ → 0.

Uniform Distribution

The easiest PDF with two parameters is the Uniform Distribution. After having
made experience with the Maxwell distribution, the Uniform Distribution is the
point of interest. The Probability Density Function of the Uniform Distribution
reads

f(x) =

{
1
σ −σ2 + τR ≤ x ≤ σ

2 + τR

0 else
. (5.168)

Here, τR is the mean of the PDF and σ is the width. This is in contrast
to the former example, where only one parameter existed. The parameter of
the Maxwell distribution could be chosen freely. In this case, there are some
restrictions for the parameter. The minimum for parameter σ = 2. Otherwise,
the integral for the calculation of the negative moments, does not converge.
One can see that the expectation value for the waiting time becomes infinity for
σ → 2. The parameter α and β do not depend on σ, which is an indicator that
the choice of the parameter was well.

By integration over that range one obtains (with Mathematica)

〈τR〉 ≡ τR,
〈
τ2
R

〉
=

1

12

(
12τ2

R + σ2
)

(5.169)

〈ΓR〉 =
log
(
− 4τR
σ−2τR

− 1
)

σ
,
〈
ΓR

2
〉

=
4

4τ2
R − σ2

(5.170)

α =
τR log

(
− 4τR
σ−2τR

− 1
)

σ
− 1 (5.171)

β =
12τ2

R + σ2

12τ2
R − 3σ2

−
τ2
R log2

(
− 4τR
σ−2τR

− 1
)

σ2
ν =

σ2

12
. (5.172)
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Figure 5.22: Current and Fano factor for a Uniform Distribution as function of energy
gap ε
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Weibull Distribution
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Figure 5.23: Weibull Distribution
left: α-parameter green dashed, 〈τR〉 blue dotted, solid red line 1

〈ΓR〉
.

center: β-parameter green dashed,
〈
τ2
R

〉
blue dotted, solid red line 1

〈ΓR2〉 .
right:α blue dotted line, β red line, variance (ν) green dashed line
For a Weibull Distribution the absolute minimum for parameter σ = 2.
Otherwise, the integral for the calculation of the negative moments does
not converge. For σ → σMin = 2,

〈
Γ2
R

〉
becomes infinite, which leads to

an infinite β-parameter as well. In the right graph one can see that α, ν
become sable for σ → 2.

Another example is the Weibull Distribution. As simplification, the default
parameter were changed, so that one parameter is the mean of the distribution.
This was done with regard to the clean case. In the clean case the mean becomes
the waiting time for the right side

f(σ, τR) =

σe
−
(
xΓ(1+ 1

σ )
τR

)
σ (

xΓ(1+ 1
σ )

τR

)
σ

x
, (5.173)

where Γ is no rate rather than the mathematical gamma function.

The output of Mathematica can be seen in the following equation:

〈τR〉 = τR,
〈
τ2
R

〉
=
τ2
RΓ
(
σ+2
σ

)
Γ
(
1 + 1

σ

)2 (5.174)

〈ΓR〉 =
π csc

(
π
σ

)
στR

,
〈
ΓR

2
〉

=
Γ
(
1 + 1

σ

)2
Γ
(
σ−2
σ

)
τ2
R

(5.175)

α =
π csc

(
π
σ

)
σ

− 1, β =
π
(
2σ csc

(
2π
σ

)
− π csc2

(
π
σ

))
σ2

(5.176)

ν =
τ2
R

(
Γ
(
1 + 2

σ

)
− Γ

(
1 + 1

σ

)2)
Γ
(
1 + 1

σ

)2 (5.177)
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Figure 5.24: Fano factor for some values for the Weibull Distribution
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5.4.5 Visual current calculation*

An attempt to guess the current directly from the Hamiltonian in analogy to
the transitions in a ring, was misleading. With regard to the scheme of DQD
in figure 5.10 it was assumed that it is possible that the current for the DQD
could be retrieved directly from the diagram. Some calculations on that are to
find in the mathematic notebook NB:QuasiClassical.

〈I∞〉 =
±4〈τR〉

(〈τε〉+2〈τR〉)2
= 4ε2ΓR

(ΓR+2ε)2 .



Chapter 6

Summary 1

6.1 Model and derivation of Quantum Master
Equation

Considering the situation, where electrons are transported from a source reser-
voir on the left side (formally a NL-fermion Hilbert Space H⊗NL), through a
system, to a target reservoir on the right side. Without external particle ex-
change, the number of transported particles n defines a fixed relation for the
particle numbers on the left side NL(n) and the right side NR(n). The complete
system dynamics is described by the Liouville-von Neumann Equation ∂t% = L%.

% is the complete density operator and L the superoperator acting on

H = HS ⊗
(⊕
NL

H⊗NL ⊕
⊕
NR

H⊗NR
)
≡ HS ⊗

⊕
n

H(n)
B . (6.1)

This Hilbert Space is very large for mesoscopic systems. The majority of this
Hilbert Space describes the dynamics of the bath. As only the system part
and the number of particles are taken into account in this article, this bath
reservoir is not relevant. Therefore, we apply the method of Nakajima and
Zwanzig [Kühne and Reineker, 1978, Zwanzig, 1960, Nakajima, 1958] and define

a projector P% =
⊕

n Tr
(n)
B (%)⊗%(n)

B,0, which projects on the subspace of relevant

information. Tr
(n)
B (%) is the trace over the bath with a fixed number of particles

NL(n), NR(n). In the standard approach [Lambert, 2005], one traces out the
n-information and reconstructs them later. In contrast to that the n-resolved
Quantum Master Equation can be directly obtained with the approach presented
in this article. With the short hand notation Q = 1 − P, the Liouville-von
Neumann Equation reads

d

dt

(
P
Q

)
% =

(
P
Q

)
L
(
P
Q

)
%+

(
P
Q

)
L
(
Q
P

)
%. (6.2)

1This chapter is a summary of the former chapter 2-5. This summary is planned to be
published in a paper and addresses the advanced reader.
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Thereby, the Liouvillan was split with respect to the projection

L = (P+Q)L(P+Q) = PLP︸︷︷︸
LS

+QLQ︸ ︷︷ ︸
LB︸ ︷︷ ︸

L0

+PLQ + QLP︸ ︷︷ ︸
LI

. (6.3)

The solution of equation (6.2) is discussed in [Breuer and Petruccione, 2002].
Using a factorizing initial condition and the Born-Markov Approximation, leads
to a first order differential equation for ∂tP%. That differential equation is trans-
formed to the interaction picture with regard to LI . Furthermore, a perturbative
expansion up to the second order is performed. After the back transformation
to the Schrödinger Picture it reads

∂tP% =

PL+

t∫
t0

PL̃I(t− t′)LI

P%. (6.4)

The Interaction Liouvillian can be split up to a sum of tensor products of a bath
and a system part.

LI% = i

%,∑
k,n′

Sk ⊗B(n′)
k

 (6.5)

Inserting this split Interaction Liouvillian to (6.4) leads to an integral kernel,
which consists of a tensor product of system and bath operators. The next
step is to apply the projector. For the bath part one can make use of the
bath correlation functions. Thereby, one has to take into account that the bath
operators of the Interaction Liouvillian might change the number of particles in
the bath reservoir, and thereby n. For example

Tr
(n)
B

(
bk%

(n′)
B,0 b†

k̄

)
= δk,k̄δn′,n−1f(εk) (6.6)

reduces the number of particles in the left reservoir and increases the number of
particles in the right reservoir. Thus, it was assumed that one has a fermionic
bath and f(εk) is the Fermi Function.

Finally, equation (6.4) can be simplified to

∂tρ
(n)(t) = LSρ(n)(t)−

∑
n′,l′,l

Γ(n′, l′, l) .
[[
ρ(n′)(t), Sl′

]
, Sl

]
. (6.7)

In this notation ρ(n)(t) stands for Tr
(n)
B (%) and Γ(n′, l′, l) is a four component

vector, which is multiplied with the components of the double commutator.

Explicit Interaction Hamiltonian

The next topic is the investigation of an explicit given Interaction Hamiltonian
of the form

V = HS,B =
∑
k,n

(
Tk,nb†ks + T ∗k,ns†bk

)
. (6.8)
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After the application of the proceedings described above, one obtains our Master
Equation

∂tρ
(n)(t) = LSρ(n)(t)

+
Γ

(n)
L

2
{ρ(n)(t), ss†} − Γ

(n)
L s†ρ(n)(t)s (6.9)

+
Γ

(n)
R

2
{ρ(n)(t), s†s} − Γ

(n−1)
R sρ(n−1)(t)s†

≡ L(n)
0 ρ(n)(t) + J (n−1)ρ(n−1)(t)

in the infinite bias limit with constant tunneling densities for each n in the
Markovian Limit.

6.2 Disorder average

As a first approach, it is physically reasonable that the tunneling rates are inde-
pendent, statistical distributed and uncorrelated to each other. In the following
the mean value of the conditioned density matrix

〈
ρ(n)(t)

〉
is in focus of interest.

Thereby, 〈. . .〉 denotes the disorder average over the random tunneling rates.

As
〈
∂tρ

(n)(t)
〉

=
〈
L(n)

0 ρ(n)(t) + J (n−1)ρ(n−1)(t)
〉

involves two different tun-

neling rates (namely rates depending on n and n− 1), the Fourier and Laplace

transformed form of this equation ρ̂χ(z) =
∫∞

0
dte−zt

(∑∞
n=0 e

inχρ(n)(t)
)

is pre-

ferred. With the short hand notation for the propagator P̂n(z) :=
[
z − L(n)

0

]−1

the n-dependent density operator in Laplace Space reads

ρ̂n(z) = P̂n(z)J (n−1) . . .J (1)P̂1(z)J (0)P̂0(z)ρ0. (6.10)

From now on, [. . . ]
−1

stands for the inverted operator. In addition to that,
scalar factors, (e.g. z), have to be multiplied by the identity-operator. It is
being assumed that the rates factorize. Therefore, it is sensible to collect terms
with the same n. Thus, all these terms have the same expectation value. This

aspect leads to the definition Ŵ(z) =
〈
Ŵn(z)

〉
, P̂(z) =

〈
P̂n(z)

〉
. Accordingly,

the expectation value for the system density matrix in Laplace Space reads
〈ρ̂n(z)〉 = Ŵ (z)nP̂(z)ρ0. This equation is formally equivalent to the constant
rate equation. Thus, it is intuitive to introduce the counting field by a Fourier
Sequence Transformation (ρχ(t) =

∑
n ρ

(n)(t)einχ) and obtain the expectation
value of ρ̂χ(z):

〈ρ̂χ(z)〉 =
[
1− eiχŴ (z)

]−1

P̂(z)ρ0. (6.11)

From this representation one can directly obtain the moments in Laplace Space,
defined as 〈m̂k(z)〉 ≡ i−kTr∂kχ〈ρ̂χ(z)〉

∣∣
χ→0

. The long-time limit for the current

in disorder average is defined as 〈I∞〉 ≡ 〈limt→∞ ∂tm1(t)〉. As well as the
moments the current can be obtained directly in Laplace Space via

〈I∞〉 = lim
z→0

z2m̂1(z). (6.12)
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Therefore, the property that the limit lim
t→∞

f(t) in time domain corresponds to

limz→0 zf̂(z) in Laplace Space, is used. Thereby, the hat on the letter denotes

that the quantity was Laplace transformed, i.e. f̂(z) =
∫∞

0
dte−ztf(t).

More effort is needed to obtain the long-time value of the Fano factor, whereas
the calculation in the Laplace Space can not be efficiently executed. Thus, the
approach is to transform the shares of the moments, which become relevant in
the long-time limit, back to the time domain and calculate the Fano factor via

〈F∞〉 ≡
m2(t)−m1(t)2

m1(t)
. (6.13)

Fortunately, the Laplace Transformation has the convenient property that terms

of the order z−k in Laplace Space correspond to terms tn−1

n! in time space. Thus,
it is intuitive to derive the Fano factor in the following order. At first, one
performs a Taylor Series Approximation of the moments in Laplace Space up to
the z0 order. After that the Inverse Laplace Transformation is applied. Finally,
the long-time limit is executed. This proceeding can also be applied to higher
cumulants. An efficient way of computing that is presented in the appendix. In
the following this method is being applied to simple quantum systems.

6.2.1 Tunneling contact

The simplest imaginable system is a tunneling contact. The first measurements
on that setup have been made by [Levitov et al., 1996]. In that case the left,
source, reservoir is connected to the right, target reservoir, but there is no system
in between. With the discussed assumptions our Quantum Master Equation

reads (L(n)
0 = −Γ(n),J (n−1) = Γ(n−1))

∂tρ
(n)(t) = −Γ(n)ρ(n)(t) + Γ(n−1)ρ(n−1)(t). (6.14)

Straight forward, one calculates by making use of the Laplace Transformation

ρ̂n(z) =

(
1∏

k=n

Γ(k)

z+Γ(k)

)
1

z−Γ(0) . Following the described procedure one obtains

P̂(z) =
〈

1
z+Γ

〉
, Ŵ (z) = 1− zP̂(z). Finally, 〈ρ̂χ(z)〉 reads

〈ρ̂χ(z)〉 =
P̂(z)

1 + eiχ
(
zP̂(z)− 1

) . (6.15)

Starting with the calculation of the first moment, which evaluates to 〈m̂1(z)〉 :=
1

z2P̂(z)
− 1

z . The long-time limit of the current is therefore

〈I∞〉 =
1

P̂(0)
=

1〈
1
τ

〉 ≡ 〈τ 〉−1
. (6.16)

The connection between the Probability Density Functions (PDF) for Γ ≡ τ−1

is given by the following relationship

〈Γ〉 =

∫
dΓΓf(Γ) =

∫
dτ

1

τ
f̃(τ), f̃(τ) ≡ 1

τ2
f

(
1

τ

)
(6.17)
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and the other way round.

To calculate the Fano factor according to our approach, firstly the second mo-
ment (〈m̂2(z)〉 = −Tr∂2

χ〈ρ̂χ(z)〉
∣∣
χ→0

) has to be derived.

m̂2(z) =
2

z3P̂(z)2
− 3

z2P̂(z)
+

1

z
(6.18)

A Series Approximation of P̂(z) leads to a polynomial of waiting times. The

connection between P̂(z), 〈τ 〉 is given by
〈
τk+1

〉
= (−1)k

∂kz P̂(z)
(k)! . In that manner

the first three terms of P̂(z) read P̂(z) ≈ 〈τ 〉−z
〈
τ2
〉

+z2
〈
τ3
〉

+O3(z). Inserting
that in (6.18) and m̂1(z), leads to the approximated moments. The order of the
next steps is important. After the Inverse Laplace Transformation the moments
are combined m2(t)− (m1(t))2 [m1(t)]

−1
to the Fano factor. After that the

execution of the long-time limit is performed.

Finally, the Fano factor evaluates to

〈F∞〉 =
2
〈
τ2
〉

〈τ 〉2 − 1 = 1 + 2
Var(τ)

〈τ〉2 , (6.19)

where Var(τ) is the variance of τ . This Fano factor is always greater than one,
as the variance is always positive.

6.2.2 Single Quantum Dot and ring

This example can be generalized if one combines several Tunneling Junctions.
Two Tunneling Junctions are formally equal to a Single Quantum Dot. On this
system detailed measurements exists as well [Gustavsson et al., 2005].

A sequence of K tunneling contacts can be interpreted as ring (cf. [Brandes,

2008]) The transitions between K states, 1 → 2 . . . → K → 1 at rates Γ
(n)
i are

interpreted as nojump superoperator. The step K → 0 is interpreted as jump
process in that case, which leads to a change in the rates. So Liouvillian and
jump operator read

L(n)
0 =



−Γ
(n)
1 0 0 . . . 0

Γ
(n)
1 −Γ

(n)
2 0 0

0 Γ
(n)
2 −Γ

(n)
3

...
...

. . . 0

0 0 . . . Γ
(n)
K−1 −Γ

(n)
K


J (n−1) =Γ

(n−1)
K |1〉〉〈〈K|, (6.20)

with 〈〈K| = (0, . . . , 1) and |1〉〉 = (1, 0, . . . )T . For K = 2, which is the Single
Quantum Dot in infinite bias limit, one obtains the following Quantum Master
Equation

∂tρ
(n)(t) =

(
−Γ

(n)
L 0

Γ
(n)
L −Γ

(n)
R

)
ρ(n) +

(
0 Γ

(n−1)
R

0 0

)
ρ(n−1). (6.21)
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In contrast to the case of the Tunnel Junction, where the operators could be
expressed as scalars, in these case the operators become K ×K-matrices

Ŵ (z) =



WΠ1 WΠ2 WΠ3 . . . WΠK

0 0 0 0

0 0 0
...

...
. . . 0

0 0 . . . 0 0

 (6.22)

P̂(z) =



P1 0 0 . . . 0
W1P2 P2 0 0

W1W2P3 W2P3 P3

...
...

. . . 0
WΠ1PK
WK

WΠ2PK
WK

. . . WK−1PK PK


with scalar parameters Wi =

〈
Γi
z+Γi

〉
, Pi =

〈
1

z+Γi

〉
and WΠi =

∏K
j=iWj .

Thus, the disorder averaged Moment Generating Function, which is defined
as M̂(iχ) ≡ Tr〈ρ̂χ(z)〉, reads

M̂(iχ) =

K∑
i=1

i∏
k=1

Pk

1− eiχWΠ

. (6.23)

The moments can be obtained by differentiation from this Moment Generating
Function, according to the counting filed variable χ. After back transformation
to the time space and the execution of the long-time limit, current and Fano
factor read

〈I∞〉 =
1

〈τΣ〉
, 〈F∞〉 =

K∑
i=1

(〈τi〉 − 2
〈
τ2
i

〉
)

〈τΣ〉
, (6.24)

with 〈τΣ〉 =
K∑
i=1

〈τi〉 and 〈τmi 〉 =
〈

1
Γmi

〉
. It is possible to express the Fano factor

as 〈F∞〉 =

K∑
i=1

(〈τi〉
2+2Var(τi))

〈τΣ〉2 , where Var(τi) denotes the variance of the inverse

tunneling rates, which is always positive. Therefore, one can simply prove that
〈F∞〉 ≥ K−1. In the special case of the Double Quantum Dot one obtains

〈I∞〉 = 1

〈τL〉+〈τR〉 for the current and 〈F∞〉 =
2〈τ2

L〉−〈τL〉2+2〈τ2
R〉−〈τR〉2

(〈τR〉+〈τL〉)2
for the

Fano factor.

6.2.3 Double Quantum Dot

In contrast to the former examples the Double Quantum Dot is a system that
cannot be obtained by a combination of several Tunneling Junctions. In that
cases bidirectional tunnelling is allowed, as well as the occurrence of coherent
states. [Gurvitz and Prager, 1996].
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The nojump and jump operator of the Double Quantum Dot in the basis ρ =
(ρ0, ρL, ρR,<ρRL,=ρRL) have the form

L(n)
0 =


−Γ

(n)
L 0 0 0 0

Γ
(n)
L 0 0 0 2T

(n)
C

0 0 −Γ
(n)
R 0 −2T

(n)
C

0 0 0 −Γ
(n)
R

2 −ε
0 −T (n)

C T
(n)
C ε −Γ

(n)
R

2

 ,

J (n−1) = Γ
(n−1)
R |0〉〉〈〈R|. (6.25)

Thereby T
(n)
C stands for the coupling strength to the coherent states and ε for the

energy difference between the left and right dot level. The Moment Generation
Function reads

M̂(iχ) =
〈AR,T (z)〉 −WL(z)〈BR,T (z)〉 − 1

4PL(z)

eiχWL(z)〈ΓRBR,T (z)〉
(6.26)

with

AR,T (z) =
(ΓR + 2z)

(
(ΓR + z)(ΓR + 2z) + 4TC

2
)

+ 4ε2(ΓR + z)

(ΓR + 2z)2 (z(ΓR + z) + 4TC2) + 4zε2(ΓR + z)
,

BR,T (z) =TC
2 ΓR + 2z

(ΓR + 2z)2 (z(ΓR + z) + 4TC2) + 4zε2(ΓR + z)
. (6.27)

According to the method proposed, a Mathematica Program was developed
to derive that function. This program can also be used to calculate the Full
Counting Statistics for a given jump and nojump operator automatically. It
becomes obvious that combinations of the scalar objects Pi,Wi are no longer
sufficient to describe the cumulants. The description in terms of PL,WL is only
possible for the left lead. The current evaluates to

〈I∞〉 =
(
〈τL〉+ 〈τR〉

(
ε2
〈
τ2
T

〉
+ 2
)

+ 1
4 〈ΓR〉

〈
τ2
T

〉)−1
. (6.28)

It is to observe that this current depends on the average tunnelling rate, as well
as on the average waiting time. A comparison to [Gurvitz and Prager, 1996],
leads to

ICln
〈I∞〉

= 1 + α
τ2
T

4τR (τL + τR (ε2τ2
T + 2)) + τ2

T

≥ 1, (6.29)

with the short hand notation 〈τR〉〈ΓR〉 ≡ 1 + α. That means that the current
always decays. Plotting the current as function of ε, leads to the observation
that the difference to the clean case becomes sufficient for the case of small ε.
This is the case, as the current denominator involves a ε2 term.
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Fano factor

The Fano factor becomes a quite long term.

〈F∞〉
〈I∞〉2

=− 〈τL〉2 + 2
〈
τ2
L

〉
+
〈
τ2
T

〉(
−4ε2〈τR〉2 + 10ε2

〈
τ2
R

〉
− 〈ΓR〉〈τR〉+

1

2

)
−
〈
τ2
T

〉
2

(
ε4〈τR〉2 +

1

2
ε2〈ΓR〉〈τR〉+

1

16
〈ΓR〉2

)
+
〈
τ4
T

〉(
2ε4
〈
τ2
R

〉
+

1

8

〈
Γ−2
R

〉
+ ε2

)
− 4〈τR〉2 + 8

〈
τ2
R

〉
(6.30)

However, the most interesting investigations can be made concerning the dis-

tribution of the right lead. Therefore, the distribution of T
(n)
C and Γ

(n)
L are

assumed to be a delta distributions. This is equivalent to the case of constant
rates. In that case, the Fano factor is given by

〈F∞〉Z2 =8〈τR〉2
(
2τ2
L + 16ν + ε2τ4

T

(
−α+ 4νε2 + 1

))
+ 8〈τR〉2

(
τ2
T

(
−2α+ 20νε2 − 1

))
+ 16〈τR〉4

(
ε4τ4

T + 6ε2τ2
T + 4

)
+
(
(α+ 1)2 + 2β

)
τ4
T (6.31)

Z =4〈τR〉 (2〈τR〉+ τL) + τ2
T

(
4ε2〈τR〉2 + α+ 1

)
with

〈
τ2
R

〉〈
Γ−2
R

〉
≡ (1 + α)2 + β, with α, β ≥ 0.

Sample distributions

As example the Maxwell Distribution is taken into account. For convenience
the distribution is normed in the way that the parameter of the Probability
Density Function is the average. Thus, the Probability Density Function is

f(x) = 32x2e
− 4x2

πσ2

π2σ3 . In that case current and Fano factor read〈
IMW
∞

〉
(ε, σ, τT , τL) =

πστL
πσ (τL + σ (ε2 + 2)) + τ2

T

(6.32)

〈
FMW
∞

〉
(ε, σ, τT , τL) =

π2τ2
L

(
4σ2 + 30πσ4ε2

)
8 (τ2

L (πσ2ε2 + 1) + πσ (2σ + τT )) 2

+
π2τ4

L

(
6πσ4ε4 + 8σ2ε2 + 3

)
+ 24π3σ4

8 (τ2
L (πσ2ε2 + 1) + πσ (2σ + τT )) 2

+ 1− 2
(
τ2
L

(
πσ2ε2 + 1

)
+ 2πσ2

)
τ2
L (πσ2ε2 + 1) + πσ (2σ + τT )

. (6.33)

The investigation of current and Fano factor at ε = 0, where the current is
maximal, leads to the following observations. The current gets zero for σ →
0,∞. And the Fano factor converges to the fixed value of 3π2

8 − 1 for σ to 0.
For σ to ∞ the Fano factor converges to 3π

4 − 1.
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6.2.4 Interpretation

In the case of examples without internal dynamics (transitions in a ring) it was
shown that the formula for the current of the clean case can be used if one
replaces the waiting times by their means. This result is quite intuitive. If
one thinks of a classical process, which consists of several sequential subpro-
cesses, the expected time for the whole process is the expected subprocesses. A
calculation of that times in terms of average transition rates is not possible.

The Fano factor for the transitions in a ring systems raises in dependence of the
variance of the distribution of the waiting times. Thus, quantum mechanic and
classical uncertainness are summed up. This is a plausible result.

The situation changes in the case of the Double Quantum Dot, because the
internal dynamics of that system is no sequential process. The current depends
on tunneling rates and waiting times as well and decays in dependence of the
parameter α. In the case of the investigated Maxwell distribution, this param-
eter has a fixed value. In general, this parameter depends on the parameters of
the distribution. There are distributions, for example the Uniform Distribution,
where the parameter α tends to infinity if very small tunneling rates become
possible. This causes a very strong suppression of the current, which is also an
traceable result.

The Fano factor for the Double Quantum Dot, which only depends on the
variance ν of the waiting time distribution for the Maxwell Distribution, raises
in contrast to the Fano factor for constant rates. The detailed behavior of the
Fano factor strongly depends on the investigated distribution. Therefore, the
most important next step in this research is to find out, which distribution of
waiting times or tunneling rates is physically reasonable.
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Chapter 7

Impurity case

The first special case discussed here is the impurity case.

We consider a Tunneling Junction with constant rates except for rate n0.

Γ(n) =

{
Γ n 6= n0

Γ′ n = n0

(7.1)

In this special situation the standard approach is applied with J (n) = Γ(n),L0 =
−Γ(n).

After the LT
t→z

, ρ̂n(z) reads

ρ̂n(z) =
Γn

(z + Γ)
n+1


1 n < n0

z+Γ
z+Γ′ n = n0

z+Γ
z+Γ′

Γ′

Γ n > n0

. (7.2)

Applying the FST
n→χ

to ρ̂n(z) leads to1

ρ̂χ(z) =
1

z + Γ
(
eiχ − 1

)
1 +

(Γ′ − Γ)
(
eiχ − 1

)
Γn0ein0χ

(Γ′ + z)(Γ + z)

 . (7.3)

This is a quite simple function, where the Inverse Laplace Transformation LT
z→t
−1

is known1

ρχ(t) =
1

Γ
(
eiχ − 1

)
+ Γ′

[
e

Γt

(
eiχ−1

)(
Γ∗
(
eiχ − 1

)ΓΓΓ(n0,Γte
iχ)

(n0− 1)!
+ Γ′eiχ

)

+
Γn0

(
eiχ − 1

)
Γ∗n0−1

e−Γ′+in0χ

(
1− ΓΓΓ(n0,Γ

∗t

(n0 − 1)!

)]
(7.4)

with Γ∗ ≡ Γ− Γ′ and the incomplete gamma function ΓΓΓ. It is quite simple
to show that the long-time limit does not change. If one regards an infinite
number of transitions, the finite set of impurities is a null set.

1using Mathematica
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Thus, the point of interest is in the time resolved current and Fano factor (see
figure 7.1), as well as in the higher cumulants (see figure 7.2).

0 100 200 300 400

0.90

0.95

1.00

1.05

1.10

t

It
G

,F
t

Figure 7.1: Current/Γ and Fano factor for n0 = 10 at rates Γ = 0.1,Γ′ = 0.01
It becomes obvious that the current is disordered for a short time and the
Fano factor needs some longer time to regenerate.

It has to be investigated that higher cumulants are disordered during a signif-
icant longer time than smaller cumulants.2 Additionally, it can be remarked
that impurities for larger n0 have less impact to the current. This aspect is not
visualized, but can be imagined by thinking of the decaying maximal amplitude
of ρ(n)(t).

In the situation of feedback control, this would not be the case, because the
amplitude is fixed there [Brandes, 2010].

Apart from this results, which leaded to the cumulants, the Inverse Laplace
Transform of ρ̂n(z) (7.2) is know1 as

ρ(n)(t) =


(Γt)n

n! e−Γt n < n0

Γn0e−Γ′t

(Γ−Γ′)n0

(
1− ΓΓΓ(n0,(Γ−Γ′)t)

(n0−1)!

)
n = n0

Γ′Γn−1e−Γ′t

(Γ−Γ′)n

(
1− ΓΓΓ(n,(Γ−Γ′)t)

(n−1)!

)
n > n0

. (7.5)

This result offers directly the possibility to show the probability for n passed
electrons 2, it is quite pleasant (figure 7.2, Pn(t) = ρ(n)(t)).

At this point the different representation of Full Counting Statistics can be
easily seen next to each other (compare section 3.2).

2With respect to the logarithmic time scale in the plot
1not obtained with Mathematica
2The trace of a 1x1-matrix is the identity.
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(a) Probability distribution for n passed electrons
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Figure 7.2: Full Counting Statistics: Tunneling Junction with an impurity at n0 = 10
at rates Γ = .1,Γ′ = .01.
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7.1 Discrete time step approach

In the former section the simplest imaginable system was discussed. The com-
plete system could be calculated analytically, but the expressions were quite
complex. Therefore, it seems imaginable that there are systems, where the an-
alytic expression becomes more complex or even unknown. A computational
implementation is easy to produce after the proceeding of (5.2). The idea is
similar to the heuristically derivation of the Quantum Master Equation of the
Single Quantum Dot, which was presented in the Single Quantum Dot example
(5.59). The nQME

∂tρ
(n)(t) = L(n)

0 ρ(n)(t)− J (n−1)ρ(n−1)(t) (7.6)

is formally replaced by

∂tρ(n, s) = L0ρ(n, s) + J (n−1)ρ(n− 1, s) (7.7)

ρ(n, s) = ρ(n, s− 1) + ∆t∂tρ(n, s− 1). (7.8)

In that context ∂tρ(n, s) is a symbolic variable3. For the tunneling contact it is
more convenient to insert (7.7) in (7.8).

Listing 7.1: Simulation for impurity case with variables g=Γ,gd=Γ′, t = ∆t s

1 Clear[p];(* delets all values in connection with p*)

p[n_,s_ ,g_,gd_ ,n0_] := 0/;n<0||s<0

p[0,0,g_ ,gd_ ,n0_] := 0

p[1,1,g_ ,gd_ ,n0_] := g

6 p[0,1,g_ ,gd_ ,n0_] := 1-g

p[n_,s_ ,g_,gd_ ,n0_] :=

p[n,s,g,gd,n0] =(* this stores the result in memory *)

If[ n==n0 ,

11 g p[n-1,s-1,g,gd,n0]+(1-gd) p[n,s-1,g,gd,n0],

If[ n==n0+1,

gd p[n0,s-1,g,gd,n0]+(1-g) p[n,s-1,g,gd ,n0],

g p[n-1,s-1,g,gd ,n0]+(1-g) p[n,s-1,g,gd,n0]

]

16 ]

Apart from the distribution, ρχ(t) can be approximated by an FST
n→χ

, which is

cut at large n.

For figure 7.3 the following approximation was done

ρχ(t) ≈ Γ∆t

n0,Offset+t
∆∞
∆t∑

n=0

einχρ
(
n, t

∆s
,Γ,Γ′, n0

)
. (7.9)

Afterwards, the cumulants were derived by the default procedure. The critical
parameter in this plot (figure 7.3) is ∆t. Lowering this parameter produces
better results (cf. figure 7.4), but consumes more computation power.

3This variable is called dtRnt in the source code.
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Figure 7.3: Simulated results for the first three cumulants (current: blue, Fano factor:
red, 3rd cumulant: green) for the case already discussed in the former
section. n0 = 10,Γ = .1,Γ′ = .05 with simulation parameter n0,Offset =
7,∆∞ = 1

5
,∆t = 4., comparison to the analytical result (solid lines)
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Figure 7.4: Improved results for the first three cumulants (current: blue, Fano factor:
red, 3rd cumulant: green) for the case as already discussed in the former
section. n0 = 10,Γ = .1,Γ′ = .05 with simulation parameter n0,Offset =
7,∆∞ = 1

5
,∆t = 2., comparison to the analytical result (solid lines).
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A detailed investigation ot the occupation (of the conditioned density matrix)
points to a recursive formula for P (n, s).

P (n, s) =


(
s
n

)
(Γ∆t)

n(1− Γ∆t)
s−n n < n0

(Γ∆t)
n0
∑s−1
j=1

(
j

n0−1

)
(1− Γ∆t)

j+1−n0(1− Γ′∆t)
s−j+1 n = n0

Γ′

Γ (Γ∆t)
n
∑s−1
j=1

(
j

n−1

)
(1− Γ∆t)

j+1−n(1− Γ′∆t)
s−j+1 n > n0

(7.10)

Calculating the limit ∆t → 0
(

Γt
s → Γt

)
leads to

P (n, t) =



(Γt)n

n! e−Γt n < n0(
Γ2t

Γ−Γ′

)n0
[
e−Γ′t − e−Γt

(
1 +

n0−1∑
α=1

((Γ−Γ′)t)
α

α!

)]
n = n0

Γ′

Γ

(
Γ2t

Γ−Γ′

)n [
e−Γ′t − e−Γt

(
1 +

n−1∑
α=1

((Γ−Γ′)t)
α

α!

)]
n > n0

(7.11)

=


(Γt)n

n! e−Γt n < n0(
Γ2

Γ−Γ′

)n0
[
e−Γ′t

(
(n0−1)!−ΓΓΓ(n0,(Γ−Γ′)t)

(n0−1)!

)]
n = n0

Γ′

Γ

(
Γ2

Γ−Γ′

)n [
e−Γ′t

(
(n−1)!−ΓΓΓ(n,(Γ−Γ′)t)

(n−1)!

)]
n > n0

, (7.12)

which is in accordance to the analytical result.

7.2 Comparison and alternatives*

In this section the known result of the clean limit is reproduced in a very brief
way. An idea for an alternative approach to treat this problem, is outlined in
the second subsection. This addresses readers, who want to the work on similar
systems.

Reference system barrier*

With the method discussed in the former section, the graphic [Flindt, 2007, 4.1]
can be reproduced by setting Γ′ = Γ = 0.1. As expected the same result is
obtained.

Considering particles transmitted to a barrier with a transmission rate Γ and
finite time-steps dt with s = t/dt. The probability to have n particles after s
time-steps is obviously

Pn,s = ΓdtPn−1,s−1 + (1− Γdt)Pn,s−1. (7.13)

Solving this recurrence equation yields to a binomial distribution

Pn,s =

(
s

n

)
(Γdt)n(1− Γdt)s−n. (7.14)
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For the limit dt→ 0 ,
(

Γt
s → Γt

)
, (7.14) becomes a Poisson Distribution

Pn(t) =
(Γt)n

n!
e−Γt. (7.15)

This function is well known. Another way to derive this result, is to change the
order of time limit and the solution of the function.

∂tPn,t = Γ (Pn,t(n− 1, t)− Pn,t) (7.16)

t→ z

zPn,z − Pn,t(n, 0) = Γ (Pn,z(n− 1, t)− Pn,z) (7.17)

n→ χ and Pn,t(n, 0) = δn,0

zPχ,z − 1 = Γ
(
eiχ − 1

)
Pχ,z (7.18)

z → t

Pχ,t = e−Γt(1−eiχ) (7.19)

The Cumulant Generating Function is

Sp(χ) = (Γt)(eiχ − 1). (7.20)

[Flindt, 2007, 4.8] χ→ t.

Pn,t =
1

2π

∫ 2π

0

e−inχ−Γt(1−eiχ) dχ =
(Γt)n

n!
e−Γt (7.21)

Alternative approach*

Another approach: Γ∗ = Γ− Γ′

∂tρ
(n)(t) = Γ

(
ρ(n)(t)(n− 1, t)− ρ(n)(t)

)
+ Γ∗

(
δn0,nρ

(n)(t)− δn0−1,nρ
(n)(t)(n0 − 1, t)

)
(7.22)

With the series Fourier Transformation and the short notation ρχ(t) =
∑
n ρ

(n)(t)einχ

one gets

∂tρχ(t) = Γ
(
eiχ − 1

)
ρχ(t) + Γ∗

(
einχρ(n)(t)(n0, t)− ei(n0+1)χρ(n)(t)(n0 − 1, t)

)
(7.23)

cf [Emary, 2009, 9.15].

The Fourier Representation of ρ(n)(t) is

ρ(n)(t) =
1

2π

∫
e−inχρχ(t)dχ, (7.24)
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which evaluates to

∂tρχ(t) = Γ
(
eiχ − 1

)
ρχ(t)

+ Γ∗
(∫ 2π

0

e−i(n0)(χ−χ′)ρχ(t)(χ′, t) dχ′ +

∫ 2π

0

e−i(n0−1)(χ−χ′)ρχ(t)(χ′, t) dχ′
)
.

(7.25)

For convenience, this is transformed to the Laplace Space by using

ρ̂χ(z) =

∫ ∞
0

ρχ(t)e(−zt) dt. (7.26)

This leads to

zρ̂χ(z)− ρχ(t)(χ, 0) = Γ
(
eiχ − 1

)
ρχ(t) + Γ∗(en0 + en0−1)

(∫ 2π

0

e−i(χ−χ′)ρχ(t)(χ′, t) dχ′
)

(7.27)

ρ̂χ(z) =
1

z − (eiχ − 1)

(
1 + Γ∗(en0 + en0−1)

∫ 2π

0

e−i(χ−χ′)ρχ(t)(χ′, t) dχ′
)
.

(7.28)

This equation can be expanded as a Dyson Series [Brandes, 2007, 1.2.7]

ρ̂χ(z)(0) =
1

z − (eiχ − 1)
1 (7.29)

ρ̂χ(z)(1) =
1

z − (eiχ − 1)

(
1 + Γ∗(en0 + en0−1)

∫ 2π

0

e−i(χ−χ′)ρχ(t)(χ′, t) dχ′
)

(7.30)

. . .



Chapter 8

Simulated
Single Quantum Dot

Instead of random rates or constant rates with impurities, one can think about
alternating rates. All systems, which are a special type of the ring case, can be
modelled with this approach.

The aim of this chapter is only to explain the idea. It is meant to do an all-
embracing and general research on that idea. Therefore, the Single Quantum
Dot will be taken as an example. In terms of the graphical scheme 5.5, the two
dimensional process is uncompressed to a linear process.

Defining n = 2m+ i with {n,m, i} ∈ N, i < 2 and

Γ(n) =

{
ΓL i(n) = 0

ΓR i(n) = 1,
(8.1)

makes the barrier becoming a Single Quantum Dot. This means for collecting
the terms after i,m leads to

∂t

(
ρn=2m+0(t)
ρn=2m+1(t)

)
=

(
−ΓL 0
ΓL −ΓR

)(
ρn=2m+0(t)
ρn=2m+1(t)

)
+

(
0 ΓR
0 0

)(
ρn=2(m−1)+0(t)
ρn=2(m−1)+1(t)

)
(8.2)

with a new definition for ρ(n)(t)dot, as vector

ρn=m(t)dot :=

(
ρn=2m(t)
ρn=2m(t)

)
(8.3)

and

L0 =

(
−ΓL 0
ΓL −ΓR

)
, J =

(
0 ΓR
0 0

)
. (8.4)

Disregarding the x dot index, makes (8.2) become the known n-resolved Liouville-
von Neumann Equation for constant rates

∂tρ
(n)(t) = L0ρ

(n)(t) + J ρn−1(t). (8.5)

The physical interpretation was already discussed:
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J : particles leaving the system

L0 : the rest

Tunneling Junction interpretation

The next step is to find out, what happens if one regards the system with its
original interpretation as Tunneling Junction?

Remembering equation (3.10)

ρ̂n(z) = P̂n(z)

(
0∏

k=n−1

Ŵk(z)

)
ρ0. (8.6)

In our case, with commuting 1x1-matrices, it becomes

ρ̂n(z) = P̂n(z)WL(z)δ

(
0∏

k=m−1

Ŵ2k(z)Ŵ2k+1(z)

)
ρ0 (8.7)

= P̂n(z)WL(z)δ (WL(z)WR(z))
m
, (8.8)

where WL(z)δ = 1 + i(n)(WL(z) − 1), ρ0 = 1, P̂n(z) = 1
z−Γ(n) , Ŵn(z) =

Γ(n)

z−Γ(n) ,Γ
(n) = Γ(i(n))1.

This forces us to split the sum of the FST
n→χ

into two parts. One for the even part

and one for the odd part.

FST
n→χ

ρ̂n(z) =

∞∑
m=0

(
P̂L(z)

(
Ŵ (z)

)m
ei2mχ + P̂R(z)WL(z)

(
Ŵ (z)

)m
ei(2n+1)χ

)
(8.9)

=
(
P̂L(z) + P̂R(z)WL(z)eiχ

) ∞∑
n=0

(
Ŵ (z)

)n
ei2nχ (8.10)

=
P̂L(z) + P̂R(z)WL(z)eiχ

1− e2iχŴ (z)
(8.11)

It is quite simple to derive the current from this point by inserting the definitions
(Ŵ (z) = WL(z)WR(z)).

limz→0 z
2m̂1(z) leads to

〈I∞〉 = 2
1

τL + τR
= 2

ΓLΓR
ΓL + ΓR

, (8.12)

which is the double of the clean case current. Using the known method to derive
the Fano factor, leads to 2

〈F∞〉 = 2
ΓL

2 + ΓR
2

(ΓL + ΓR)2
= 2

τ2
L + τ2

R

(τL + τR)2
, (8.13)

1i(n) = i(i(n)) can be interpreted as projector in this case
2In this (special) case the expression in terms of waiting times and tunneling rates are

formally equivalent.
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which is also the double of the Fano factor (5.97). (8.12, 8.13) are expected
results. In the simulation, the current passing through the right and the left
Tunneling Junction, is transported through one Tunneling Junction. This Tun-
neling Junction can then be interpreted as alternatingly right or left tunneling
contact.





Chapter 9

Feedback control simulation

In a former step a classical feedback look for the nQME could be used. There-
fore, the principle of [Brandes, 2010] is applied to the n-dependent tunneling
rates.

In this thesis the view is restricted to the simulation of the Tunneling Junction.
The nQME now reads

∂tρ
(n)(t) = Γ(n−1)f(qn−1(t))ρ(n−1)(t)− Γ(n)f(qn(t))ρ(n)(t) (9.1)

with f(x) = 1 + gx and qn = 〈I∞〉t − n. In [Brandes, 2010] the following
observations were done for the clean case:

• The FCS charge distribution P (n, t) converges rapidly into a stationary
distribution with a fixed shape, which moves with a constant speed to
larger n.

• Even cumulants have finite values in the long-time limit.1

Clean case

At first the result for constant waiting times is being reproduced with the sim-
ulation method explained in chapter 7.1.

Listing 9.1: Simulation for clean feedback case with variables gm=Γ∆t,G=g,I0= I∞,
t = ∆t s and rate restriction to gFB= ∆tΓeff ∈ [0.001 . . . 0.999]

(* initial values *)

Clear[pFB ,gFB];

pFB[n_ ,s_] := 0/;n<0||s<0

4 pFB[n_ ,0] := DiscreteDelta[n]

(*rates*)

cFB[n_ ,s_] :=

Min[Max[G (I0 s-n) ,(.001-gm)/gm],(.999-gm)/gm] (* numerical restriction *)

gFB[n_ ,s_] :=

9 gFB[n,s] = gm (1+ cFB[n,s])

(* density operator *)

pFB[n_ ,s_] :=

pFB[n,s] = N[gFB[n-1,s-1] pFB[n-1,s-1]+(1 - gFB[n,s-1]) pFB[n,s-1]]

1In the case without feedback they become infinite. The constant values were current and
Fano factor.
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Figure 9.1: Simulation for the distribution of the FCS charge distribution p(n, s) with
Γ = 1,∆t = 0.1, g = 0.02 on the left. On the right feedback parameters.
geff was restricted to the range between 0 and one. With a time-step of
0.1 this restricts f(qn) in the area of 0 . . . 10.

This leads to good results despite the finite control strength (cf. figure 9.1).
This finite control strength had to be introduce to keep the trace of the system
density matrix equal to one2. A more intuitive explanation for the finite strength
is that the probability for an event has to be in the range from zero to one.

Random case

Analogically to the clean case, a simulation for the random case was designed.
To get a reference a simulation without feedback is done at first. As in the clean
case without feedback (not shown), the distribution for the random case splits
up. In that case the parameter α is the parameter of a Uniform Distribution
with the width σ = 1.8 the mean Γ = 1

α = αUniform =
log
(
− 4

Γσ−2 − 1
)

Γσ
− 1 ≈ 0.63, (9.2)

which implies a decay in the current to 〈I∞〉 = 〈Γ〉 1
1+α ≈ .61〈Γ〉.

2In that one dimensional example that measure keep 1 = 1.
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This fact can also be observed by comparing figure 9.1 with 9.2. For example
the maximum at s = 1800 is slowed down from 180 to about 110 (see also
(5.24)). Due to the fact that the shape of the distribution for the random rates
is unknown as function of time (see 5.1), a simulation was performed with 20
independent sets of random rates. Averaging over the probability for that rates,
approximates the charge distribution. Thus, only the rates are simulated and
the charge distribution for every set of random rates is derived analytically. In
9.2 it can be observed that the shape of the distribution runs in a fixed state
apart from the random fluctuations.
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(a) no feedback
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(b) feedback

Figure 9.2: Simulation for the distribution of the FCS charge distribution p(n, s) for
a Uniform Distribution with mean at Γ = 1 and width σ = 1.8. This
distribution was calculated based on just 20 samples. Therefore, the shape
is not smooth. The upper picture shows the situation without feedback
and the lower picture with feedback at feedback strength g = 0.02. The
time step width was set to ∆t = 0.1 again. As in the clean case the shape
of the distribution is conserved. Thereby, the same rates were used for the
case with and without feedback.

To clarify the situation one single time step is taken into account in figure 9.3.
In that figure one can see that the feedback controls the randomness like a
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Figure 9.3: Simulation for the distribution of the number of particles pn over n after
s = 101 steps of simulation

red line : for constant rates Γ =
(∫ .9

.1
x−1t.5(x)dx

)−1

= 0.434, where t.5(x) is

the PDF of a triangular distribution with mean at 0.5 and width 0.8
blue line : for the same rate with feedback g = .1
red squares : one realization of random rates for the former distribution t.5(x).
blue dots : same realization with feedback g = .1. One can see
blue+red area (top) The outer boarder is the absolute value of the additional

feedback rate for random rates
red area (top) : additional feedback rate for random case.

For the simulation with a discrete time step approach the rate has to get a
value between 0 and 1, in contrast to the analytical calculation, where the
control part can becomes any value. As this gets affected for very large
or small rates, the feedback was bordered for the simulation.

moving potential. At this point it has to be mentioned that it was not proven
that the average random rate has the same shape as the clean rate with the
same waiting time. This facts implicate a discussion, which is handled in the
following outlook.



Chapter 10

Conclusion and Outlook

In this thesis the wide range of applications of the n-resolved Quantum Master
Equation with variable tunneling rates was demonstrated.

It was shown that a microscopic derivation of the nQME is possible. A further
step in this direction is to check if this derivation can be generalized to time re-
solved methods. In this context it should be possible to consider non Markovian
effects. Therefore, a budding approach is the TCL1-method, which is discussed
in [Breuer and Petruccione, 2002].

In a further step it was shown that the formalism for constant rates can be
generalized for random distributed tunneling rates as well. The known results
were reproduced for as special case in the clean limit, where a sharp distribution
was investigated. It was pointed out that the mean of the inverse tunneling rates,
the waiting times are the fundamental variables to describe random distributed
current for systems without internal dynamics. The expected result that random
rates lead to a decrease of the current and an increase of the Fano factor could
be confirmed for all investigated sample setups. For a conclusion of these results
see 6.2.5 on page 102. A software was developed to investigate arability setups.
Thus, it would be simple to derive the current, Fano factor and higher order
cumulants for Triple Quantum Dots etc. The next step is to investigate, which
distributions occur in reality. A detailed research on a large number of PDFs
without experimental background might be misleading.

The next step is to investigate, which distributions occur in reality. A detailed
research on a large number of PDFs without experimental background might
be misleading.

The FCS for shorter times were not investigated in detail. One approach was
the small bandwidth approach. With this approach one is able to determine the
shape of the average distribution for random rates. However, the precondition
for that is that the derivation of the nQME is compatible with the investigated
time scales.

Another point to continue the research is to connect the quantum mechanical

1time-convolution-less
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waiting times [Brandes, 2008] with the (negative moment) waiting times of this
thesis. By doing that, a gentle tool for experimental examinations could be
created.

It was also shown that there are many other options to apply the nQME beyond
randomness. For further investigations, especially the approach of combining
Feedback Control with the random is an interesting topic.

Overall there are many possible connotations. Some of them are adumbrated
in the * chapter.

However, if this research is being continued, the overall next step is to get a close
relationship to the experiments and to compare the theoretical calculations with
experimental data.
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Appendix A

Mathematical definitions
and propositions

The following chapter contains the mathematical definitions and propositions,
which were used in this thesis. As it concerns very simple mathematical sen-
tences, it seems to be easier to formulate a fitting statement and proof it, instead
of doing a literature research. Even so the sentences can be probably found in
the appropriate books.

A.1 Basic statistic

Definition 5 〈 x 〉 :=
∫
S

x (Γ)f(Γ) dΓ

Definition 6 (expected value) 〈 x 〉 is the expected value with regard to all
rates in expression x , where

• S is the region of all possible rates 1,

• Γ ∈ S is a vector, representing a set of rates Γα and

• f is the Probability Density Function (PDF).

The Probability Density Function f has the following properties

•
∫
S

f(Γ) dΓ = 1

• ∀Γ ∈ S : f(Γ) ≥ 0

Proposition 4 (separable case) In the special case, when

• S =
∏
α Sα is the Cartesian power of subsets Sα and

• the expression x =
∏
α x α is separable with respect to Sα,

the expected value 〈 x 〉Γ =
∏
α 〈 x α〉Γα .

1S was chosen with regard to the word Sample space
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Proof

〈 x 〉S =

∫
S

x (Γ)f(Γ) dΓ

=

∫
· · ·
∫

S1,S2,...

a1(Γ1)a2(Γ2) . . . f1(Γ1)f2(Γ2) . . . dΓ1dΓ2 . . .

=

∫
S1

a1(Γ1)f1(Γ1) dΓ1

︸ ︷︷ ︸
〈 x 1〉Γ1

∫
S2

a2(Γ2)f2(Γ2) dΓ2

︸ ︷︷ ︸
〈 x 2〉Γ2

. . . (A.1)

Assumption 1 Due to physical reasons, all rates are said to be positive real
numbers.

That means for Sα

Sα ⊂ ]0,∞ [. (A.2)

For convenience we extend fα to the whole range of reals

fα(x) :=

{
0 x ≤ 0 ∨ x =∞
fα(x) else (old definition).

(A.3)

Cumulants

The relationship between moments and cumulants is [Wikipedia, 2010b]

cn = mn(t)−
n−1∑
k=1

(
n− 1

k − 1

)
ckmn−k(t). (A.4)

Special regard has to be taken to the displacement law, which was used in (3.50)
and is a special case of the formula (A.4)

Proposition 5 (displacement law) The variance of any random variable x :〈
( x − 〈 x 〉)2

〉
can be rewritten by〈

( x − 〈 x 〉)2
〉

=
〈
x 2
〉
− 〈 x 〉2. (A.5)

Proof〈
( x − 〈 x 〉)2

〉
=
〈
x 2 − 2 x 〈 x 〉)2 + 〈 x 〉2

〉
=
〈
x 2
〉
− 2〈 x 〈 x 〉〉+

〈
〈 x 〉2

〉
=
〈
x 2
〉
− 〈 x 〉2

(A.6)

Proposition 6 (variance and Fano factor (Single Quantum Dot))

∀{a, b} ∈ R+ :
a2 + b2

(a+ b)2
≥ 1

2
(A.7)
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Proof

a2 + b2

a2 + b2 + 2ab
≥ 1

2
(A.8)

⇔ 2(a2 + b2) ≥ a2 + b2 + 2ab (A.9)

⇔ a2 + b2 ≥ 2ab (A.10)

Without loss of generality we write b > a→ b = a+ ε, ε ≥ 0

⇔ 2a2 + 2aε+ ε2 ≥ 2a2 + 2aε (A.11)

⇔ ε2 ≥ 0. (A.12)

Proof Alternative (a− b)2 ≥ 0⇒ a2 + b2 ≥ 2ab⇒ 2(a2 + b2) ≥ (a+ b)2.

Proposition 7 (variance and Fano factor (ring))

∀{ak} ∈ R+ :

K∑
k=1

a2
k

(
K∑
k=1

a2
k

≥ 1

K
(A.13)

Proof This sum can be rewritten to

K
K∑
k=1

a2
k ≥

(
n∑
k=1

ak

)2

=
K∑
k=1

a2
k + 2

K∑
i,j=1
i6=j

aiaj (A.14)

⇔ (K − 1)
K∑
k=1

a2
k ≥ +2

K∑
i,j=1
i6=j

aiaj . (A.15)

Assuming, without loss of generality, aK ≥ aK−1 · · · > a1, leads to a2
k ≥ akaj,

with k ≥ j. So it is sufficient to show that the n inequalities

(K − 1)ak ≥
k−1∑
j=1

aj (A.16)

are valid. This is obvious, because K ≥ k ≥ j.
Remark: Proposition 6 is a special case of proposition 7.

A.1.1 Positivity of Fano factor parameters

According to the Jenson inequality for every convex function f(x), we have

f(〈x〉) ≤ 〈f(x)〉. (A.17)

That means that

〈x〉−k ≤
〈
x−k

〉
. (A.18)
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Especially k = 1 leads to the fact that α ≥ 0. In the same style, one can
show that

〈
x2
〉
≥ 〈x〉2 and

〈
x−2

〉
≥ 〈x〉−2. The multiplication of these two

inequalities leads to 〈
1

x2

〉〈
x2
〉
≥
〈

1

x

〉
2
〈
x2
〉

= (1 + α)2. (A.19)

Thus β ≥ 0.

A.2 Features of Laplace Space

If there is no way to derive mk(t) analytically, one can use a Taylor Series
at z = 0 if the long-time limit is in focus of interest. Due to the following
proposition, it is sufficient to develop up to order O(z)0.

Proposition 8 (order of Taylor Series for long-time limit) The Inverse
Laplace Transformation of zk for k > 0 is LT

z→t
−1{zk} = 0 for t 6= 0.

Proof

LT
z→t
−1{zk} =

1

2πi
lim
c2→∞

∫ c1+ic2

c1−ic2
eztzk dz, (A.20)

which is a so called Bromwich Integral that can be calculated via the residual
theorem. Obviously, the function eztzk has no residuals. Thus, the Bromwich
integral evaluates to 0.

Proposition 9 For a complex function m̂1(z) that has no singularities in the
region, where Re(z) > 0 and LT

z→t
−1m̂1(z) = m1(t)m, we have

lim
t→∞

∂tm1(t) = lim
z→0

z2m̂1(z). (A.21)

Proof

lim
t→∞

∂tm1(t) =

∫ ∞
0

∂2
tm1(t)dt+ ∂tm1(0) (A.22)

= lim
z→0

∫ ∞
0

∂2
tm1(t)e−ztdt+ ∂tm1(0)

= lim
z→0

z2m̂1(z)− lim
z→0

zm1(0)

= lim
z→0

z2m̂1(z)

A.3 Series Approximations

For a sharp distribution a series expansion at the mean value is possible as well.

While calculating the Taylor Series, the following proposition was used.
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Proposition 10 (series of a product of function) The Taylor Series of a
product of two functions f(z), g(z) of order k can be calculated as the first k
orders of the product of the Taylor Series of order k+1 of f and g

Tk,fgz = Tk,f (z) · Tk,g(z) +O(z)k+1. (A.23)

Proof The Taylor Polynomial (at point a = 0 of order k of function f) is defined
as

Tk,f (z) =
k∑
j=0

f (j)(z)

j!
zj . (A.24)

The product rule is

(f(z)g(z))
(j)

=

j∑
l=0

(
j

l

)
f (j−l)(z)g(l)(z) (A.25)

with
(
j
l

)
= j!

l!(j−l)! .

Inserting (A.25) into (A.24) leads to

Tk,f (z) =

k∑
j=0

∑j
l=0

(
j
l

)
f (j−l)(z)g(l)(z)

j!
zj =

k∑
j=0

j∑
l=0

f (j−l)(z)g(l)(z)

l! (j − l)! zj . (A.26)

Comparing with

Tk,f (z) · Tk,g(z) =

 k∑
j=0

f (j)(z)

j!
zj

 k∑
j=0

g(j)(z)

j!
zj

 =
k∑
j=0

j∑
l=0

f (j−l)(z)

(j − l)!
gl(z)

l!
zj +O(z)k+1

(A.27)

and collecting the terms of the same zk, shows the result.

Proposition 11 (permutability of mean and series) Let g be a function
of Γ, z and 〈g〉 = 〈g(z,Γ)〉Γ with ∂z(Γ) = 0. Then it is possible to permute the
calculation of mean and series.

Tk,〈g〉(z) = 〈Tk,g(z)〉 (A.28)

(A.29)

Proof

Tk,〈g〉(z) =
k∑
j=0

〈
g(j)(Γ, z)

〉
j!

zj

=
k∑
j=0

∫
g(j)(Γ, z)f(Γ) dΓ

j!
zj

=

∫ k∑
j=0

g(j)(Γ, z)

j!
zjf(Γ) dΓ = 〈Tk,g(z)〉 (A.30)
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A.4 Special derivates

Proposition 12 (derivative of inverse matrices) Let A = A(x) be an in-
vertible matrix, which only depends on x. Then one can calculate the derivative
of the inverse matrix (A−1) via

∂xA
−1 = −A−1.∂x(A).A−1. (A.31)

Proof

∂xA
−1 = ∂x(A−1.A.A−1)

= ∂x(A−1).A.A−1 +A−1.
(
∂x(A).A−1 +A.∂xA

−1
)

= 2∂xA
−1 +A−1.(∂xA).A−1

= −A−1.(∂xA).A−1 (A.32)



Appendix B

Basic physic

In this chapter standard methods from quantum mechanics and statistics are
repeated.

B.1 Liouville-von Neumann Equation

In this section the Liouville-von Neumann Equation will be derived from the
Schrödinger Equation and expressed in superoperator form.

B.1.1 Schrödinger Equation

The well known time dependent Schrödinger Equation [Brandes, 2009, 1.30]

i∂tΨ = HΨ (B.1)

can be expressed in bra- or ket-notation

〈i∂tΨ| = 〈HΨ| (B.2)

|i∂tΨ〉 = |HΨ〉 . (B.3)

By using the hermitian property of the scalar product 〈αΨ|βΦ〉 = α∗β 〈Ψ|Φ〉
[Brandes, 2009, 2.72], it is possible to derive the time derivative of the state in
bra- or ket-notation.

∂t |Ψ〉 = −iH |Ψ〉 (B.4)

∂t 〈Ψ| = i 〈Ψ|H (B.5)

133
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B.1.2 Density matrix and Liouville-von Neumann Equa-
tion

The density matrix is defined as

%S :=
∑
n

pn |n〉 〈n| [Brandes, 2009, 3.43] (B.6)

with the general properties:

Tr%S = 1 traceclass 1 (B.7)

%S
† = %S Hermitian (B.8)

%S ≥ 0 positv semidefinit (B.9)

The time development is

% = %H := U%SU†, (B.10)

described via the time-development-operator [Brandes, 2009, 3.71]

U = e−iHt (B.11)

⇒ ∂tU = −iHU. (B.12)

⇒ ∂tU
† = iU†H. (B.13)

With the time derivatives and straight forward algebra, one computes [Brandes,
2009, 3.75]�� ��∂t% = i [%,H] , Liouville-von Neumann Equation. (B.14)

B.1.3 Motivation: n-dependent tunneling rates

H0

V

Figure B.1: Idea of n-dependent rates
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The derivation of the full n-resolved Quantum Master Equation with n-dependent
tunneling rates is quite long.

As a first simplification we start to derive n-dependent 1 tunneling rates after
standard quantum mechanics methods (QMII Schöll,Brandes). Starting with a
Hamiltonian, which depends on scalar function n(t) and can be split into two
parts

H(n(t)) = H0 + V(n(t)), (B.15)

where one depends on n(t) and the other one not.

Assuming that n(t) is a step-function, leads to the following form for V(n(t))
and can be written as

V(n(t)) =



V(1) 0 < t ≤ t1
V(2) t1 < t ≤ t2
. . .

V(n) tn−1 < t ≤ tn
. . .

(B.16)

It has to be remarked that the ti are completely unknown. Writing V(n(t))
stands for the expectation value of all possible realization, where n-1 steps hap-
pened after the time t (〈V(t1, t2, . . . , tN , t) : tn−1 < t ≤ tn〉). Thus, the (??)
becomes

∂t%(n(t)) = i[%(n(t)),H(n(t))]. (B.17)

With the assumption that the solution for H0 is known, it is nearby to transform
to an effective interaction picture

U0 = e−iH0t (B.18)

%̃(t, n(t)) := U†0%(n(t))U0. (B.19)

So with the product rule and the derivative for U, one becomes

∂t%̃(t, n(t)) = −i [%̃(n(t)),H0] + U†0 (∂t%(n(t))) U0 (B.20)

= −i [%̃,H0] + U†0 (i [%,H0 + V(n(t))]) U0 (B.21)

= −i [%̃,H0] + iU†0 [%,V] U0 + iU†0 [%,H0] U0 (B.22)

= −i [%̃,H0] + i
[
%̃, Ṽ

]
U0 + i [%̃,H0] (B.23)

= i
[
%̃(t, n(t)), Ṽ(t, n(t))

]
, (B.24)

where

Ṽ(t, n(t)) = eiH0tV(n(t))e−iH0t. (B.25)

The notations ,%̃′ := %̃(t′, n(t′)) and the same for V (Ṽ := Ṽ(t, n(t)),Ṽ
′

:=

Ṽ(t′, n(t′))) 2, as well as the definition
∫ ′

=
∫ t
tn−1

dt′, helps to keep the text

1n has no physical interpretation yet. It does not stand for the number of particles, which
have been transported through a Quantum Dot yet.

2In the literature s is sometimes used instead of t’
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readable.

If one regards Ṽ as a perturbation, it is self-evident that a perturbative expan-
sion makes sense

%̃ = %̃(tn−1) + i

∫ ′ [
%̃′, Ṽ

′]
, (B.26)

(B.27)

where %̃(tn−1) is the state, when the last jump process happened.

%̃ = %̃(tn−1) + i

∫ ′ [
%(tn−1), Ṽ

′]
+O(Ṽ)2 (B.28)

∂t%̃ = i
[
%(tn−1), Ṽ

]
−
∫ ′ [[

%̃′, Ṽ
′]
, Ṽ
]

(B.29)

If we write the former equation in the basis-representation %a,b = 〈a| % |b〉, it
looks like this

%a,b = %a−,b− + i

∫ ′ [
%a−,b−, Ṽ

′]
+O(Ṽ)2. (B.30)

B.2 Fermi’s Golden Rule

To be consisted with the standard notation of Fermi’s Golden Rule, the state
notation is used instead of the density matrix notation for the next steps.

We start with

|ψ̃(t)〉 = |ψ̃0〉 − i

∫ t

0

dt′ Ṽ (t′)|ψ̃ (t′)〉. (B.31)

For our problem we call the system-state at time t = tn : ψn (B.30)

|ψ̃(t)〉 = |ψ̃n−1〉 − i

∫ ′
Ṽ ′ |ψ̃n−1〉+O(Ṽ ′)2. (B.32)

Assuming that the system is in the pure state |ψn−1〉 = |i〉 at time t = tn.
The probability for a change from |i〉 to |f〉 with i 6= f in the time region tn
(tn−1 > t > tn+1)) is given by

Pn,i→f (t) :=
∣∣∣〈f |ψ̃〉∣∣∣2 =

∣∣〈f |U0
†ψ〉
∣∣2 =

∣∣∣ei(εf−εi)t∣∣∣2︸ ︷︷ ︸
1

|〈f |ψ〉|2 (B.33)

=

∣∣∣∣∫ ′ 〈f | Ṽ ′ |i〉∣∣∣∣2 =
∣∣∣〈f |V(n) |i〉

∣∣∣2 ∣∣∣∣∫ ′ ei(εf−εi)t′ ∣∣∣∣2 (B.34)

=
∣∣∣V(n)

fi

∣∣∣2 sin2

(
(t− tn−1)∆ε

2

)(
2

∆ε

)2
3. (B.35)
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The rate is defined as Γi→j := limt→∞
1
tPi→j .

Γn,i→j = lim
t→∞

1

t
Pn,i→j = lim

t→∞

1

t

∣∣∣V(n)
fi

∣∣∣2 sin2

(
(t− tn−1)∆ε

2

)(
2

∆ε

)2

(B.36)

=
∣∣∣V(n)

fi

∣∣∣2 lim
t→∞

1

t
sin2

(
t∆ε

2

)(
2

∆ε

)2

=
∣∣∣V(n)

fi

∣∣∣2 lim
t→∞

t sinc2

(
t∆ε

2

)
(B.37)

=
∣∣∣V(n)

fi

∣∣∣2 2π lim
2γ→0

1

π2γ
sinc2

(
∆ε

2γ

)
(B.38)

=
∣∣∣V(n)

fi

∣∣∣2 2πδ(∆ε) (B.39)

In the second line the definition of the rate hides a physical problem. When
every real number tn−1 can be neglected in comparison to t, which is going to
∞, this question has to discussed on finite timescales. This problem is ignored
at this point, because Γn,i→j will be derived from the waiting time distribution
for experimental data.

In the last step π−1 sinc2 was used as normalized L2 function for a dirac-series4.

Thus, the definition for the n-dependent tunneling rates reads

Definition 7 Γ
(n)
k :=

∑
f limt→∞

1
tPn,k→f = 2π

∑
f

∣∣∣V(n)
fi

∣∣∣2 δ(ε− εf )

Replacing the rate in the QME with this n-dependent rates leads to the nQME.

2ΠÑt-2ΠÑt
E f -Ei

ΡE f -Ei,t

Figure B.2: sinc function

3∆ε = εf − εi
4
∫∞
−∞ sinc2(x) dx = π and limγ→0

1
γ
f
(
x
γ

)
= δ(x)
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B.3 Superoperator form

In linear algebra linear mappings from matrices to matrices are expressed by
matrices.

Kn×n × Kn×n → Kn×n (B.40)

This is done by expressing source and target of the matrices as vectors by
choosing an appropriate basis and write the linear mapping as matrix concerning
this basis. In this style the same can be done with linear operations from
operators to operators called superoperators.

As an example, one regards the density matrix of a two level system as linear
combination of Pauli Matrices.

ρ =

x1

x2

x3


σ

=

(
a b
c d

)
ρi,j

(B.41)

ρ =
1

2

4∑
i=0

xiσi (B.42)

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (B.43)

Obviously, x0 = 1. Otherwise the trace (B.7) of the density-matrix would not
be one. The formula xi = Trσiρ helps to compute explicitly the basis-change. 5

For the Liouville-von Neumann Equation this means (B.14)

∂t% = L%, (B.44)

where L is called Liouvillan, which is discussed in detail below.

B.3.1 Effective interaction picture

Regarding the case that the Hamiltonian is given in the form

H = H0 + λV, (B.45)

where λV is a small perturbation for the Hamiltonian H0 .

With the free-time-evolution-operator U0 := e−iH0t for the unperturbed system

( H0 ) and its hermitian conjugate (h.c) U†0 := eiH0t, one defines %̃ := U0%U†0.

Thus, the Liouville-von Neumann Equation in the interaction picture reads

∂t%̃ = λL̃%̃ (B.46)

5An Mathematica Program concerning Pauli Matrices can be found at http://homepage.

cem.itesm.mx/lgomez/quantum/v7pauli.pdf

http://homepage.cem.itesm.mx/lgomez/quantum/v7pauli.pdf
http://homepage.cem.itesm.mx/lgomez/quantum/v7pauli.pdf


B.3. SUPEROPERATOR FORM 139

with L̃ := i
[
x , Ṽ

]
6. With %̃0 = %̃(t = 0), L̃′ := i

[
x , Ṽ(t′)

]
7, as well as the

definition
∫ ′

=
∫ t

0
dt′, which helps to keep the text readable, %̃ reads

%̃ = %̃0 +

∫ ′
L̃′%̃′. (B.47)

6H0 disappears, because of the product-rule ∂t%̃ = ∂t(U†0)%U0 + U†0%∂t(U0) +
U†0(∂tL%)U†0 = −i[%,H0] + i[%,H0] + iλ

[
%,U†0VU0

]
7In the literature s is sometimes used instead of t’





Appendix C

Calculations

C.1 Higher moments

As this is a quiet long expression even for the first moment, the following short
hand notation makes sense for higher moments. The superoperator

T̂ (z) :=

(
lim

iχ→0
eiχŴ (z).

1

1− eiχŴ (z)

)
=
(
Ŵ (z).Ĝ0(z)

)
. (C.1)

(C.2)

Therefore, one defines a custom trace function with the short hand notation

TrC x = Tr x .P̂(z).Ĝ0(z).ρ0. (C.3)

The coefficients c(n, k) can be calculated as a nested sum of the first k integer
numbers. The iteration step looks for example like this 1 + 2 + 3 → 1 + 2(1 +
2) + 3(1 + 2 + 3). These numbers comes from the derivative.

With the help of the standard differentiation rules and the incremental use of
(A.31), the first six moments evaluate to

m̂1(z) = CTr
(
T̂ (z)

)
(C.4)

m̂2(z) = CTr
(
T̂ (z) + 2! T̂ 2(z)

)
(C.5)

m̂3(z) = CTr
(
T̂ (z) + 3 · 2! T̂ 2(z) + 3! T̂ 3(z)

)
(C.6)

m̂4(z) = CTr
(
T̂ (z) + 7 · 2! T̂ 2(z) + 6 · 3! T̂ 3(z) + 4! T̂ 4(z)

)
(C.7)

m̂5(z) = CTr
(
T̂ (z) + 15 · 2! T̂ 2(z) + 25 · 3! T̂ 3(z) + 10 · 4! T̂ 4(z) + 5! T̂ 5(z)

)
(C.8)

m̂6(z) = CTr
(
T̂ (z) + 31 · 2! T̂ 2(z) + 90 · 3! T̂ 3(z) + 65 · 4! T̂ 4(z) + 15 · 5! T̂ 5(z) + 6! T̂ 6(z)

)
(C.9)

141
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In that way even higher moments look quite simple.

The kernel of higher moments has been calculated with the help of the Mathe-
matica function nQMEMomMatGen.

Listing C.1: General form of the moments.

(* :: Package :: *)

3 (* Define a custom matrix product with standard attributes *)

Attributes[SmallCircle] = {Flat , OneIdentity };(* SmallCircle is something like a matrix product (.) *)

SmallCircle /: a_◦(b_ + c_) := a◦b + a◦c;
SmallCircle /: a_◦(k_Integer*b_) := k*a◦b;
SmallCircle /: (k_Integer*a_◦b__)◦c_ := k*a◦b◦c;

8
(*D[_,χ]-->d*)
d::usage = "Someting like a differential -operator for matrices concerning χ";

d[R] := R◦d[W]◦R (* see AA EqRefRWR ZZ *)

d[W] = W;(*W does not depend on chi *)

13 (* Standard differntiation rules *)

d[x_◦y_] := d[x]◦y + x◦d[y];
d[k_Integer*b__] := k*d[b];

d[a_ + b_] := d[a] + d[b]

d[1, b__] := d[b];

18 d[n_, b__] := d[d[n - 1, b]];

(* rewrite Rules to keep the result short *)

TzRul := {W◦R -> Tz[1], Tz[n_]◦Tz[k_] -> Tz[n + k]} (* find WR*)

CTrace1Rul := R◦Tz[k_] -> 1/k! Tz[k] (* Replace with Tz*)

23 (* the exported function *)

nQMEMomMatGen[k_] := nQMEMomMatGen[k] = Expand[d[k, R]]//. TzRul /. CTrace1Rul;(* keep the evaluated

values *)

Taking a look to the coefficients of T̂ k(z) leads to the following observations.

• The derivative produces terms in the form k!
(
Ŵ (z).Ĝ0(z)

)k
. Therefore,

T̂ k(z) was defined in the way it is.

• The coefficients c(n, k) can be calculated as a nested sum of the first k
integer numbers. The iteration step looks for example like this 1+2+3→
1 + 2(1 + 2) + 3(1 + 2 + 3). These numbers comes from the derivative

c(n, k) =c̃(n− k + 1, k) (C.10)

with c̃(s, k) =

{∑k
i=1 ic̃(s− 1, i) s > 1

1 else
(C.11)

Following the general formula reads�
�

�

m̂n(z) = CTr

n∑
k=1

c(n, k)k! T̂ k(z)k. (C.12)

So one can calculate high cumulants in a very short time.

Listing C.2: Improved algorithm. First 100 moments in less than 1 second.

Coeff[s_, k_] := Coeff[s, k] = If[s > 1, Sum[i*Coeff[s - 1, i], {i, 1, k}], 1];

Coeffn[n_, k_] := Coeff[n - k + 1, k];

nQMEMomMatGen[n_] := nQMEMomMatGen[n] = Sum[Coeffn[n, k]*Tz[k], {k, 1, n}];
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C.1.1 Single Quantum Dots

For the Single Quantum Dot the higher cumulants read

m̂1(z) =
WR(z)(PL(z) + PR(z)WL(z))(ρ00WL(z) + ρ01)

(WL(z)WR(z)− 1)2
(C.13)

m̂2(z) =− WR(z)(WL(z)WR(z) + 1)(PL(z) + PR(z)WL(z))(ρ00WL(z) + ρ01)

(WL(z)WR(z)− 1)3

(C.14)

m̂3(z) =
WR(z)(WL(z)WR(z)(WL(z)WR(z) + 4) + 1)(PL(z) + PR(z)WL(z))(ρ00WL(z) + ρ01)

(WL(z)WR(z)− 1)4

(C.15)

m̂4(z) =− WR(z)(WL(z)WR(z) + 1)(WL(z)WR(z)(WL(z)WR(z) + 10) + 1)(PL(z) + PR(z)WL(z))

(WL(z)WR(z)− 1)5

· (ρ00WL(z) + ρ01) (C.16)

m̂5(z) =
(WL(z)WR(z)(WL(z)WR(z)(WL(z)WR(z)(WL(z)WR(z) + 26) + 66) + 26) + 1)

(WL(z)WR(z)− 1)6

· (PL(z) + PR(z)WL(z))WR(z)(ρ00WL(z) + ρ01) (C.17)

m̂6(z) =− (WL(z)WR(z)(WL(z)WR(z)(WL(z)WR(z)(WL(z)WR(z) + 56) + 246) + 56) + 1)

(WL(z)WR(z)− 1)7

·WR(z)(WL(z)WR(z) + 1)(PL(z) + PR(z)WL(z))(ρ00WL(z) + ρ01)
(C.18)

C.2 Alternatives

C.2.1 Vector-Notation*

One idea was to use the vector notation. The disadvantage of this approach is
that one has to deal with vectors of infinite length. Starting from [Emary, 2009,
9.12] in vector notation with

∂tρ
(n)(t) = L0ρ

(n)(t) + J ρ(n)(t)(n− 1, t). (LvN.n)

For convenience the short notation x i =

{
x L i Odd

x R i Even
and x ī =

{
x R i Odd

x L i Even

is used.

σi =

{
ρ(n)(t),0(i/2, t) i Even

ρ(n)(t),1( i−1
2 , t) i Odd

Ki,j = δi−1,jΓī − δi,jΓi

∂tσ = Kσ
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Hence, the propagator

G =
1

z −K
yields to a lower triangle matrix,

we introduce kR = LR(z)ΓL and kL = LL(z)ΓR
1

• The diagonal-elements are Gi,i = Li

• The off-diagonal-elements can be calculated recursively by
Gi,j = θ0(i− j)Gi−1,jki

. . . to be continued (see Mathematica Notebooks)

1If Γ becomes n-dependent, only the definition of k has to be changed.
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C.2.2 The other dimension of randomness*

A further step is to calculate the variance of ρ̂n(z) as well.〈
(ρ̂n(z)− 〈ρ̂n(z)〉)2

〉
(C.19)

Definition 8 Vn,n′;z,z′ := 〈ρ̂n(z)ρn′z′〉
For this model Vn,n′;z,z′ is with (5.7)

Vn,n′;z,z′ =

〈(
1

z + Γ(n)

n−1∏
k=0

Γ(k)

z + Γ(k)

) 1

z + Γ(n′)

n′−1∏
k′=0

Γ(k′)

z + Γ(k′)

〉. (C.20)

It is no restriction to assume n ≥ n′. That means

Vn,n′;z,z′ =

〈
n′−1∏
k=0

Γ(k)2

(z + Γ(k))(z′ + Γ(k))

n−1∏
k=n′+1

Γ(k)

z + Γ(k)

Γ(n′)
(z′+Γ(n′))(z+Γ(n′))(z+Γ(n))

〉

Vn,n′;z,z′ =

〈
n′−1∏
j=0

Γ(j)2

(z + Γ(j))(z′ + Γ(j))

〉〈
n−2∏
j=n′

Γ(j)

z + Γ(j)

〉〈
Γ(n−1)

(z′+Γ(n−1))(z+Γ(n−1))

〉〈
1

z+Γ(n)

〉
(C.21)

with〈
n′−1∏
j=0

Γ(j)2

(z + Γ(j))(z′ + Γ(j))

〉
=

(
1 +

z2

z′ − zL(z) +
z′

2

z − z′L(z′)

)n′
(C.22)

(sign change!!)〈
Γ(n−1)

(z′ + Γ(n−1))(z + Γ(n−1))

〉
=

z

z − z′L(z) +
z′

z′ − zL(z′). (C.23)

Vn,n′;z,z′ evaluates to

Vn,n′;z,z′ =

(
1 +

z2

z′ − zL(z) +
z′

2

z − z′L(z′)

)n′
(1 + zL(z))

n−n′−1

(
z

z − z′L(z) +
z′

z′ − zL(z′)

)
L(z).

(C.24)

However, as no application for this variance could be found, this approach was
not being continued.





Appendix D

Software

D.1 Mathematica Package nQME

Download The package can be downloaded at

https://fcs.physikerwelt.de/wiki/nQME-Package

Installation After having downloaded, the software has to be decompressed
into the folder $UserBaseDirectory/Applications, where $UserBaseDirectory
can be obtained by typing $UserBaseDirectory into a blank Mathematica
Notebook. Afterwards, there should be a file $UserBaseDirectory/Applications/nQME/Ramdom.m.

Initialization Needs["nQME‘Random‘"] initializes the package

source The full source code from the main package

Listing D.1: Source of the main package.

(* :: Package :: *)

(* Mathematica Package *)

5 (* Created by the Wolfram Workbench Feb 23, 2010 *)

BeginPackage["nQME ‘Random ‘"]

(* Exported symbols added here with SymbolName :: usage *)

(* Put here unprotect clear *)

10 nQMESetL0 ::usage="The Liouvillian"

nQMESetJ ::usage="The Jump -Operator"

nQMESetTraceFunction ::usage="The trace function."

nQMESetAssumptions ::usage="Assumptions used for to simplify the trace"

nQMESetRandomVariables ::usage="The variables assumed to be random"

15 nQMESetMethod ::usage="Set Method to \"matrix\" or MGF"

20 nQMEMomMatGen ::usage="Gives a general expression for the matrices of the moments. The moments are

obtained by tracing that matrix."

Tz:: usage="Def .."

Tau::usage="Def .."

Mu:: usage="Def .."

Cum::usage="Def .."

25 Kurt::usage="Def .."

Scrw::usage="Def .."

nQMEILt :: usage="Gives the current for the long time limit"

nQMEFanoLt :: usage="Fano Factor"

nQMECumLt ::usage="Fano Factor"

147

https://fcs.physikerwelt.de/wiki/nQME-Package
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30 CleanLimit ::usage="CleanLimit"

CleanLimitG ::usage="CleanLimit concerning tunnel rates"

CentralMomentForm ::usage="Central Moments"

CumulantForm :: usage="Cumulants"

35 DistNamedForm ::usage="Central Moments with Scrwness and Kurt"

GenTex ::usage="Generates Latex Code"

\[Tau]:: usage="waiting time"

\[ CapitalGamma ]:: usage="tunnel rate"

GenTexMom ::usage=""

40 MGenFkt ::usage=""

z::usage=""

χ::usage=""
Erw::usage=""

45
Begin["‘Private ‘"]

50 Clear[R,W,P,WE ,PE,RE];

(* Set initial conditions *)

nQMESetL0[Mat_ ]:=(s=SessionTime [];L0:=Mat);

nQMESetJ[Mat_ ]:=(s=SessionTime [];J:=Mat);

nQMESetTraceFunction[Mat_ ]:=(s=SessionTime []; TraceFunction :=Mat);

55 nQMESetAssumptions[Mat_ ]:=(s=SessionTime []; TraceKond :=Mat);

nQMESetRandomVariables[Mat_ ]:=(s=SessionTime []; nDependent :=Mat);

nQMESetMethod[Meth_ ]:=(s=SessionTime []; method :=Meth);

(* general Form for Moments in z-space *)

Print["Load moment function"];

60 Get["nQME ‘momGenImp ‘"];

(* Seperation aproach *)

Seperate[Expression_ , Var_] :=

Module [{Dep = 1, InDep = 1, Fkt , Exp = Factor[Expression ]},

Fkt[subexp_] :=

65 If[Or[MemberQ[subexp , Var , Infinity], MatchQ[subexp , Var]],

Dep *= subexp , InDep *= subexp ];

If[ ! (Head[Exp] === Times), Fkt[Exp],

Map[Fkt , Exp]]; Return [{Dep , InDep }]];

70
(* rules for ERW *)

Erw[gl_^n_Integer , gl_] := Tau[-n, gl];(* /; n < 0*)

(* Erw[gl_ ,gl_ ]:= Tau[-1,gl]*)

75 Erw /: D[Erw[x_, y_], z_] := Erw[D[x, z], y]

Erw /: Series[Erw[x_ , y_], z__] := Erw[Series[x, z], y]

Erw[a_ + b_ , z_] := Erw[a, z] + Erw[b, z]

Erw[k_Integer , x_] := k

80 Erw[k_Integer*y_, x_] := k*Erw[y, x]

ErwRul0 := Erw[x_, y_] :> Erw[ExpandAll[x], y];

ErwRul1 := {Erw[s_*Erw[x_, y_Symbol], z_Symbol] :>

Erw[s*Erw[x, y] /. ErwRul , z],

Erw[Erw[x_ , y_], z_] :> Erw[Erw[x, y] /. ErwRul , z]}

85 ErwRul2 :=

Erw[x_ , y_Symbol] :>

Module [{Sep = Seperate[x, y]}, Sep [[2]]* Erw[Sep[[1]], y]];

ErwRul3 := Erw[gl_ ,gl_]->Tau[-1,gl];

90 (* Transformation function for expectation value *)

TF1[e_] := e /. ErwRul0 /. ErwRul1 /. ErwRul2 /. ErwRul3 (**)

Ser[e_ , k_] := e /. Erw[x_ , y_] :> NewErw[x, y, k]

95
(* claculation of the expectation value with seperation of x*)

NewErw[x_, y_, k_] :=

TF1@Normal@

Module [{},(* Print [" Called with "]; Print [{x,y,k}]; *)

100 If[MemberQ[x, Erw[_, _], Infinity] || MatchQ[x, Erw[_, _]],

Module [{Erg = Seperate[x, Erw[_, _]], Dep = 1,

InDep = 2},(* Print[Erg [[ Dep ]]]; *)

If[MemberQ[Erg[[InDep]], z, Infinity],

105 If[MatchQ[Erg[[Dep]], Erw[_, _]],

If[Erg[[Dep , 2]] =!= y,

(* Print [" case1 "]; *)

Erw[Ser[Erw[Erg[[Dep , 1]]* Erg[[InDep]], Erg[[Dep , 2]]], k],

y],

110 Throw["not implemented one" + Erg]

],

Throw["not implemented two" + Erg]

],

(* Print ["no z dep "]; *)

115
Erw[Erg[[ InDep ]]* Ser[Erg[[Dep]], k], y]]],

TF1@Normal@Erw[Series[x, {z, 0, k + 1}], y] + O[z]^(k + 1)]];

SepErw[Exp_ , Var_] :=

120 Module [{ Seperated = Seperate[Exp , Var]},

Erw[Seperated [[1]] , Var]* Seperated [[2]]]

ErwGen[Exp_] := Erw[Exp , nDependent ];

125 MatErw[L_] := Map[ErwGen [#] &, L, {2}]

ErwExpFkt[e_] :=

Collect[Simplify@e /.

Erw[Exp__ , Dep_List] :> Fold[SepErw [#1, #2] &, Exp , Dep], z]
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ctSer1[n_] :=

130 ctSer1[n,s] =

Simplify[mtSer[[n]] -

Sum[Binomial[n - 1, k - 1] ctSer1[k] mtSer[[n - k]], {k, n - 1}]]

135 Clear[dim];

dim:=pDim[s]= Dimensions[L0 ][[1]]

PSpc := PSpci[s] = FullSimplify[Inverse[z IdentityMatrix[dim] - L0]];

WSpc := WSpci[s] = J.PSpc;

140 (*R=Inverse[ IdentityMatrix [dim]-W];*)

WE := WEi[s]= MatErw[WSpc];

PE := PEi[s]= MatErw[PSpc];

RE := REi[s]= Inverse[IdentityMatrix[dim] - WE];

REchi := REchii[s]= Inverse[IdentityMatrix[dim] -Exp[I χ] WE];

145
MomMatSpc[k_] := MomMatSpc[k,s]= nQMEMomMatGen[k] /. Tz[l_] -> l!*PE.RE.MatrixPower[WE.RE, l];

MGenFkt := ErwExpFkt@ (( TraceFunction@ ((PE.REchi))));

mzSer[k_] := mzSer[k,s]= If[TrueQ[method =="matrix"], Ser[Limit[D[MGenFkt ,{χ,k}],χ->0]/I^k, k + 1];

,mzSer[k,s]= Ser[ErwExpFkt@ (( TraceFunction@ MomMatSpc[k])), k +1]]; (* gives a Series aproximation with

O[z]^k term *)

150 mzSer0[k_]:= mzSer[k,s]= Simplify@Collect [1/z*Normal[z*mzSer[k]+O[z]],z]; (* this is speed *)

mtSer[k_] :=mtSer[k,s]= Simplify[InverseLaplaceTransform[mzSer0[k], z, t],

t > 0 && TraceKond ];

ctSer[n_] :=

155 ctSer[n,s] =

Simplify[mtSer[n] - Sum[Binomial[n - 1, k - 1] ctSer[k] mtSer[n - k], {k, n - 1}]];

nQMEFanoLt := Simplify@

Limit[Simplify[ctSer [2]/ ctSer [1], TraceKond], t -> Infinity ];

160 nQMECumLt[k_] :=

Simplify@

Limit[Simplify[ctSer[k]/ctSer [1], TraceKond],

t -> Infinity]

165
nQMEILt := m1LT[s]= Simplify[Limit[z^2* mzSer[1], z -> 0], TraceKond ];

REP[Ord_ ]:= Table[Tau[n,x_]->Sum[Binomial[n,k]Mu[k,x] Tau[1,x]^(n-k) ,{k,0,n}],{n,Ord ,1,-1}]; (* Replaces

moments of the waiting time distribution by central Momements .*)

Tau[0,x_ ]:=1;

170 Mu[0,x_]=1;

Mu[1,x_]=0;

REPC[Ord_ ]:= Table[Tau[n,x_]->Cum[n,x]+Sum[Binomial[n-1,k-1] Cum[k,x] Tau[n-k,x],{k,1,n-1}],{n,Ord

,1,-1}];

sRep:=Mu[3,x_]->Scrw[x] Mu[2,x]^(3/2);

kRep:=Mu[4,x_]->Kurt[x] Mu[2,x]^2;

175 CleanLimit[x_ ]:=((x/.Tau[n_,y_]->Subscript [\[Tau],y]^(n)));

CleanLimit[x_,s_]:=((x/.Tau[n_,s]->Subscript [\[Tau],s]^(n)));

CleanLimitG[x_]:=((x/.Tau[n_,y_]->Subscript [\[ CapitalGamma],y]^(-n)));

CleanLimitG[x_ ,s_]:=((x/.Tau[n_ ,s]->Subscript [\[ CapitalGamma],s]^(-n)));

CentralMomentForm[x_,o_]:=x/.REP[o];

180 CumulantForm[x_,o_]:=x/.REPC[o];

DistNamedForm[x_,o_]:= CentralMomentForm[x,o]/. kRep/.sRep

TexRulesLog := {RegularExpression[

"\\\\ text \\{Erw \\}(\\\\ left)?\\((.*?) ,(.*?) (\\\\ right)?\\)"] ->

"\\Erw{$2}_{$3}",RegularExpression["\\\\ text \\{Tau \\}(\\\\ left)?\\((.*?) ,(.*?) (\\\\ right)?\\)"] ->

185 "\\TAU{$2}_{$3}",

RegularExpression["\\\\ text \\{ SmallTau \\}(\\\\ left)?\\((.*?) (\\\\ right)?\\)"] ->

"\\tau_{$2}"}

TexRules := {"\\Gamma _L" -> "\\GL", "\\ Gamma _R" -> "\\GR",

" i " -> "\\I ", "\\ Gamma _T" -> "\\GT",

190 "\\text{Tz}("~~x_~~")"->"\\Tz["~~x~~"]",

"\\TAU{" ~~ x_ ~~ "}_{"~~y_~~"}" :> "\\TAU" ~~ IntegerString[ToExpression[x], "Roman"]~~"{"~~y~~"}

",

"\\TAU{-" ~~ x_ ~~ "}_{"~~y_~~"}" :> "\\TAUm" ~~ IntegerString[ToExpression[x], "Roman"]~~"{"~~y~~

"}" };

GenTex[tex_] :=

195 StringReplace[StringReplace[StringReplace[ToString[TeXForm[tex]], TexRulesLog], TexRulesLog],

TexRules ];

GenTexMom[n_]:= Module[ {out=""},

For[i=1,i<=n,i++,

200 out=out~~ "\\mz"~~ ToString[i]~~" &=& \\ MyTrace {\\ left("~~ GenTex[nQMEMomMatGen[i]]~~ "\\ right)} \\\\ \

n";

]out];

End[]

205 EndPackage []

Print["nQME ‘Random was loaded."];

D.2 Double Quantum Dot

As a demonstration, the application of the program to the Double Quantum
Dot example is listed below.
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For convenience the output is set as TEX equations.

Listing D.2: Sample for use of nQME for DQD.

(* :: Package :: *)

Needs["nQME ‘Random ‘"](* Initialize tha package *)

nQMESetL0[Transpose [{{-L,L,0,0,0},{0,0,0,0,-T},{0,0,-R,0,T},{0,0,0,-1/2R,\[ Epsilon ]},{0,2T,-2T,-\[

Epsilon ],-1/2R}}]]; (* specify the DQD Liouvillian . Here just the subscript of \[ CapitalGamma ]

is given *)

5 nQMESetJ[Normal[SparseArray [{{1,3}->R} ,{5 ,5}]]]; (* and the jump part *)

nQMESetRandomVariables [{L,R,T}]; (* Specify variables that should be treated as random *)

TraceFunction[Mat_ ]:=Tr[(( Mat.{p00 ,p11 ,p22 ,p12 ,p21}))[[1;;3]]]; (* The tracefunction of the

Superoperator *)

nQMESetTraceFunction[TraceFunction ];

nQMESetAssumptions[p00+p11+p22 ==1]; (* Toal density matrix at t=0 shold have Tr 1*)

10 ILt=nQMEILt (* Calculate the current *)

GenTex[ILt] (* pass output to latex *)

CleanLimit[ILt](* Calculate the clean limit with waiting times *)

GenTex [%](* pass output to latex *)

FanoLt=FullSimplify@CleanLimit [#,L]& @CleanLimit [#,T]& @nQMEFanoLt (* calculate the FanoFactor with clean

(L,T)*)

15 GenTex[FanoLt] (* pass to latex out ... with some special mods \]*)

FanoLtG=FullSimplify@CleanLimitG [#,L]& @CleanLimitG [#,T]& @nQMEFanoLt (* FanoFactor with Gamma istead of

t*)

GenTex[FanoLtG] (* pass to latex out ... with some special mods \]*)

FCl=FullSimplify@CleanLimit[FanoLt] (* clean limit for fano factor *)

GenTex[FCl](* pass output to latex *)

First the system is specified. After the evaluation of the system, the variable
ILT has the value of long-time current

〈I∞〉 =
4

4〈τL〉+ 4〈τR〉 (ε2〈τ2
T 〉+ 2) + 〈ΓR〉〈τ2

T 〉
. (D.1)

The clean limit one can get via CleanLimit[ILt]

〈I∞〉cln =
4

4τL + 4τR (ε2τ2
T + 2) +

τ2
T

τR

(D.2)

Modifing the Random variables to nQMESetRandomVariables[{R}]; FanoLt = nQMEFanoLt // FullSimplify;

〈F∞〉,rnd,R =

ΓL
2
(
−
(
4
(
2TC

2 + ε2
)
〈τR〉+ 〈ΓR〉

)2
+ 32

(
TC

2 + ε2
) (

4TC
2 + ε2

) 〈
τ2
R

〉
+ 2
〈
Γ−2
R

〉)
(4 (ΓL (2TC2 + ε2) 〈τR〉+ TC2) + ΓL〈ΓR〉)2

+ 8

(
ΓL

2
(
TC

2 + 2ε2
)

+ 2TC
4
)

(4 (ΓL (2TC2 + ε2) 〈τR〉+ TC2) + ΓL〈ΓR〉)2 (D.3)

〈F∞〉,rnd,R
(
τ2
T

(
4ε2〈τR〉+ 〈ΓR〉

)
+ 8〈τR〉+ 4τL

)
2 =

8τ2
T

(
20ε2

〈
τ2
R

〉
−

2〈τR〉
(
4ε2〈τR〉+ 〈ΓR〉

)
+ 1
)

+ τ4
T

(
−
(
−32ε4

〈
τ2
R

〉
+
(
4ε2〈τR〉+ 〈ΓR〉

)2 − 2
〈
Γ−2
R

〉
− 16ε2

))
− 64

(
〈τR〉2 − 2

〈
τ2
R

〉)
+ 16τ2

L

〈F∞〉 =
8τ2
R

(
2ΓL

2τ2
R

(
4TC

4 + 6TC
2ε2 + ε4

)
+ ΓL

2
(
ε2 − TC2

)
+ 2TC

4
)

+ ΓL
2

(4τR (ΓLτR (2TC2 + ε2) + TC2) + ΓL) 2

(D.4)

=
16τ2

Lτ
2
R + 8τ2

Rτ
2
T

(
12ε2τ2

R − 1
)

+ τ4
T

(
4ε2τ2

R + 1
)

2 + 64τ4
R

(4τR (τL + τR (ε2τ2
T + 2)) + τ2

T ) 2
(D.5)
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D.3 Sample Notebooks

List of sample notebooks that can be downloaded at https://fcs.physikerwelt.
de/wiki/SampleNotebooks. In the text the following notebooks where refer-
enced explicitly.

https://fcs.physikerwelt.de/wiki/NB:SmallBWBar (NB:SmallBWBar)

https://fcs.physikerwelt.de/wiki/NB:SimSD (NB:SimSD)

https://fcs.physikerwelt.de/wiki/NB:Ham2Lio (NB:Ham2Lio)

https://fcs.physikerwelt.de/wiki/NB:autoMW (NB:autoMW)

https://fcs.physikerwelt.de/wiki/NB:QuasiClassical

(NB:QuasiClassical)

https://fcs.physikerwelt.de/wiki/SampleNotebooks
https://fcs.physikerwelt.de/wiki/SampleNotebooks
https://fcs.physikerwelt.de/wiki/NB:SmallBWBar
https://fcs.physikerwelt.de/wiki/NB:SimSD
https://fcs.physikerwelt.de/wiki/NB:Ham2Lio
https://fcs.physikerwelt.de/wiki/NB:autoMW
https://fcs.physikerwelt.de/wiki/NB:QuasiClassical
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counting statistics of nano-electromechanical systems. Europhysics Letters
(EPL), 69(3):475–481.

[Fujisawa et al., 2004] Fujisawa, T., Hayashi, T., Hirayama, Y., Cheong, H. D.,
and Jeong, Y. H. (2004). Electron counting of single-electron tunneling cur-
rent. Applied Physics Letters, 84(13):2343.

[Gardiner et al., 1986] Gardiner, C. W., Bhat, U. N., Stoyan, D., Daley, D. J.,
Kutoyants, Y. a., and Rao, B. L. S. P. (1986). Handbook of Stochastic Meth-
ods for Physics, Chemistry and the Natural Sciences. Biometrics, 42(1):226.

[Gurvitz and Prager, 1996] Gurvitz, S. and Prager, Y. (1996). Microscopic
derivation of rate equations for quantum transport. Physical Review B,
53(23):15932–15943.

[Gustavsson et al., 2005] Gustavsson, S., Leturcq, R., Simovic, B., Schleser, R.,
Ihn, T., Studerus, P., Ensslin, K., Driscoll, D. C., and Gossard, A. C. (2005).
Counting statistics of single-electron transport in a quantum dot. Solid State
Physics, 1:1–5.

[Hanson et al., 2006] Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha,
S., and Vandersypen, L. M. K. (2006). Spins in few-electron quantum dots.
Applied Physics, page 52.

[Herbort, 2008] Herbort, G. A. P. D. (2008). Analysis III.
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[Schöll, 1998] Schöll, E. (1998). Theory of Transport Properties of Semiconduc-
tor Nanostructures (Electronic Materials Series). Springer.

[Skobel’tsyn and Wood, 1972] Skobel’tsyn, D. and Wood, J. (1972). Quantum
Electronics in Lasers and Masers: Pt. 2 (Lebedev Physics Institute). Plenum
Publishing Corporation.



162 BIBLIOGRAPHY

[Sohn et al., 1997] Sohn, L. L., Schön, G., and Kouwenhoven, L. P. (1997).
Mesoscopic Electron Transport (NATO Science Series E: (closed)). Springer.

[Stoof and Nazarov, 1996] Stoof, T. and Nazarov, Y. (1996). Time-dependent
resonant tunneling via two discrete states. Physical Review B, 53(3):1050–
1053.

[Thomsen and Gumlich, 2008] Thomsen, C. and Gumlich, H.-E. (2008). Ein
Jahr für die Physik. Wissenschaft + Technik Verlag.

[Weisstein, ] Weisstein, E. W. Moment-Generating Function – from Wolfram
MathWorld.

[Weisstein, 2010a] Weisstein, E. W. (2010a). Central Moment. From
MathWorld–A Wolfram Web Resource.

[Weisstein, 2010b] Weisstein, E. W. (2010b). Raw Moment. From MathWorld–
A Wolfram Web Resource.

[Wikipedia, 2010a] Wikipedia (2010a). Fermis Goldene Regel — Wikipedia{,}
Die freie Enzyklopädie.
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〈
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Arguments: [n]
. 27–30, 47, 60–62, 70, 75, 97–99, 101, 107, 110, 170, 175

JmpnM (J (n−1)) , TEX-Command: JmpnM, Occurrence: 18
. 28, 29, 47, 61, 70, 75, 97–99, 101, 110, 170

kket (| 1 〉〉) , TEX-Command: kket, Occurrence: 25
Arguments: 1
. 73–75, 99–101, 170

Laplace Transformation (LT
t→z

) Categorie: Transformation, , TEX-Command:

LapT, Occurrence: 17
Definition: LT

t→z
≡
∫∞

0
dte−ztf(t)

Arguments: [f(t)]
. 27, 28, 31, 34, 38, 39, 48, 107, 166, 170, 171

inverse (LT
z→t
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mzSer (m̃n(z)) , TEX-Command: mzSer, Occurrence: 3
Definition: m̃n(z) ≡∑b abz

−b +O(z)0 ≈ m̂n(z)



Glossary 171
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. 33, 36, 170

mztinvI (m̂1tInv(z)) , TEX-Command: mztinvI, Occurrence: 3
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Operator ( 1 ) Categorie: Operator, normal letters for operators, TEX-Command:
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Definition: P̂ ≡ P̂(z) = LT
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. 28, 48, 172

St (
(
eiχ − 1

)
) , TEX-Command: St, Occurrence: 13
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〉
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Definition: U0 ≡ e−iH0t

. 138, 139, 166, 172, 173
UND (U†0) , TEX-Command: UND, Occurrence: 8
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rence: 31
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Bath (TrB [ x ]) , TEX-Command: TrB, Occurrence: 6
Definition: TrB [ x ] ≡∑ 〈B|H |B〉
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Custom (TrC) , TEX-Command: CTr, Occurrence: 2
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. 38, 65, 72, 84, 99, 100, 173

var (Vn,n′;z,z′) , TEX-Command: var, Occurrence: 7
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) , TEX-Command: VTS, Occurrence: 7

Definition: Ṽ
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. 16, 17, 174
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∫
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TLI (〈τL〉) , TEX-Command: TLI, Occurrence: 30
Definition: 〈τL〉 ≡
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〉
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TLII (
〈
τ2
L

〉
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〉
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Definition: 〈τR〉 ≡

〈
Γ−1
R

〉
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WL (WL(z)) , TEX-Command: WL, Occurrence: 71

Definition: WL(z) ≡
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〉
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Wnz (Ŵn(z)) , TEX-Command: Wnz, Occurrence: 25

Definition: Ŵn(z) ≡ J (n)P̂n(z) = J (n)
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0
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π,0 (z)) , TEX-Command: WPnMz, Occurrence: 13
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. 28–30, 61, 175
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π (z)) , TEX-Command: WPnz, Occurrence: 2
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. 44, 175

WP (WΠ(z)) , TEX-Command: WP, Occurrence: 17
Definition: WΠ(z) ≡WL(z)WR(z)
. 62, 63, 175

WR (WR(z)) , TEX-Command: WR, Occurrence: 42

Definition: WR(z) ≡
〈

ΓR
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〉
. 62–64, 66, 116, 143, 175

Wz (Ŵ (z)) , TEX-Command: Wz, Occurrence: 42
Definition: Ŵ (z) ≡ J P̂(z)
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. 30, 31, 35, 36, 44, 49, 52, 61–63, 71, 97, 98, 100, 116, 141, 142, 168, 169, 173,
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