{ "cells": [ { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "<h2>Aufgabe 1: Lineare Regression</h2>\n", "\n", "Gegeben sind drei Messpunkte $(x_i, y_i)$ mit den konkreten Messwerten:\n", "\n", "<ul>\n", " <li>(1,1)</li>\n", " <li>(2,2)</li>\n", " <li>(3,2)</li>\n", "</ul>\n", "\n", "Gesucht sind zwei Funktionen $f$ und $g$, welche die drei Messpunkte approximieren. Dabei soll $f$ eine Gerade und $g$ ein quadratische Funktion sein." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Das heißt:\n", " \n", "$$\n", " f(x) = ax + b\\\\\n", " g(x) = ax^2 + bx + c\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "<h3>Aufgaben: </h3>\n", "<ol>\n", " <li>Stell für beide Funktionen das zu lösende LGS auf!</li>\n", " <li>Löse die LGS und gib die Funktionen $f$ und $g$ konkret an!</li>\n", "</ol>" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Für eine Gerade sieht eine mögliche allgemeine Systemmatrix wie folgt aus:\n", "\n", "$$\n", " \\begin{bmatrix}\n", " 1 & x_1\\\\\n", " 1 & x_2\\\\\n", " \\vdots & \\vdots\\\\\n", " 1 & x_n\n", " \\end{bmatrix}\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Für eine quadratische Funktion sieht eine mögliche allgemeine Systemmatrix wie folgt aus:\n", "\n", "$$\n", " \\begin{bmatrix}\n", " 1 & x_1 & x_1^2\\\\\n", " 1 & x_2 & x_2^2\\\\\n", " \\vdots & \\vdots & \\vdots\\\\\n", " 1 & x_n & x_n^2\n", " \\end{bmatrix}\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Für die Gerade sieht ein mögliches LGS so aus:\n", "\n", "$$\n", " \\begin{bmatrix}\n", " 1 & 1\\\\\n", " 1 & 2\\\\\n", " 1 & 3\\\\\n", " \\end{bmatrix}\n", " \\begin{bmatrix} b \\\\ a \\end{bmatrix} = \\begin{bmatrix} 1 \\\\ 2 \\\\ 2\\end{bmatrix}\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Lösen mit der Normalengleichung:\n", " \n", "$$\n", "\\begin{bmatrix}\n", " 1 & 1 & 1\\\\\n", " 1 & 2 & 3\\\\\n", " \\end{bmatrix}\n", " \\begin{bmatrix}\n", " 1 & 1\\\\\n", " 1 & 2\\\\\n", " 1 & 3\\\\\n", " \\end{bmatrix}\n", " \\begin{bmatrix} b \\\\ a \\end{bmatrix} = \n", " \\begin{bmatrix}\n", " 1 & 1 & 1\\\\\n", " 1 & 2 & 3\\\\\n", " \\end{bmatrix}\n", " \\begin{bmatrix} 1 \\\\ 2 \\\\ 2\\end{bmatrix}\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "$$\n", " \\begin{bmatrix}\n", " 3 & 6\\\\\n", " 6 & 14\\\\\n", " \\end{bmatrix}\n", " \\begin{bmatrix} b \\\\ a \\end{bmatrix} = \n", " \\begin{bmatrix} 5 \\\\ 11\\end{bmatrix}\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "$$\n", "\\begin{bmatrix} b \\\\ a \\end{bmatrix} = \\begin{bmatrix} \\frac{2}{3} \\\\ \\frac{1}{2} \\end{bmatrix}\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "$$\n", " f(x) = \\frac{1}{2}x + \\frac{2}{3}\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "<img src=\"imgs/aufg1.png\" style=\"margin:auto;\" width=\"40%\" />" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Für die quadratische Funktion sieht ein möglich LGS so aus:\n", " \n", "$$\n", " \\begin{bmatrix}\n", " 1 & 1 & 1\\\\\n", " 1 & 2 & 4\\\\\n", " 1 & 3 & 9\\\\\n", " \\end{bmatrix}\n", " \\begin{bmatrix} c \\\\ b \\\\ a \\end{bmatrix} = \\begin{bmatrix} 1 \\\\ 2 \\\\ 2\\end{bmatrix}\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Dieses LGS hat eine Lösung!\n", "\n", "$$\n", " \\begin{bmatrix} c \\\\ b \\\\ a \\end{bmatrix} = \\begin{bmatrix} -1 \\\\ 2.5 \\\\ -0.5 \\end{bmatrix}\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Und mit der Normalengleichung?\n", " \n", "$$\n", "\\begin{bmatrix}\n", " 1 & 1 & 1\\\\\n", " 1 & 2 & 3\\\\\n", " 1 & 4 & 9\\\\\n", " \\end{bmatrix}\n", " \\begin{bmatrix}\n", " 1 & 1 & 1\\\\\n", " 1 & 2 & 4\\\\\n", " 1 & 3 & 9\\\\\n", " \\end{bmatrix}\n", " \\begin{bmatrix} c \\\\ b \\\\ a \\end{bmatrix} = \\begin{bmatrix}\n", " 1 & 1 & 1\\\\\n", " 1 & 2 & 3\\\\\n", " 1 & 4 & 9\\\\\n", " \\end{bmatrix}\n", " \\begin{bmatrix} 1 \\\\ 2 \\\\ 2\\end{bmatrix}\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "$$\n", " \\begin{bmatrix}\n", " 3 & 6 & 14\\\\\n", " 6 & 14 & 36\\\\\n", " 14 & 36 & 98\\\\\n", " \\end{bmatrix}\n", " \\begin{bmatrix} c \\\\ b \\\\ a \\end{bmatrix} = \n", " \\begin{bmatrix} 5 \\\\ 11 \\\\ 27 \\end{bmatrix}\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Gleiche Lösung!\n", "\n", "$$\n", " \\begin{bmatrix} c \\\\ b \\\\ a \\end{bmatrix} = \\begin{bmatrix} -1 \\\\ 2.5 \\\\ -0.5 \\end{bmatrix}\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "$$\n", " g(x) = -0.5x^2 + 2.5x - 1\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "<div class=\"text-center\">\n", "<b>Das ist eine Interpolation!</b>\n", " \n", "<img src=\"imgs/aufg2.png\" style=\"margin:auto;\" width=\"40%\" />\n", "</div>" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "<h2>Aufgabe 2: Cholesky-Zerlegung</h2>" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Berechne die Cholesky-Zerlegung folgender Matrizen:\n", " \n", "$$ A =\n", " \\begin{bmatrix}\n", " 4 & 0 & 0 & 0\\\\\n", " 0 & 9 & 0 & 0\\\\\n", " 0 & 0 & 36 & 0\\\\\n", " 0 & 0 & 0 & 16\\\\\n", " \\end{bmatrix} \\quad\n", " B = \\begin{bmatrix}\n", " 4 & 2 & 2 & 8 \\\\\n", " 2 & 10 & 10 & 7 \\\\\n", " 2 & 10 & 11 & 9 \\\\\n", " 8 & 7 & 9 & 22\n", "\\end{bmatrix}\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Für A:\n", " \n", "$$\n", " L = \n", " \\begin{bmatrix}\n", " 2 & 0 & 0 & 0\\\\\n", " 0 & 3 & 0 & 0\\\\\n", " 0 & 0 & 6 & 0\\\\\n", " 0 & 0 & 0 & 4\\\\\n", " \\end{bmatrix}\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "notes" } }, "source": [ "Für Diagonalmatrizen einfach die Wurzeln der Diagonalterme bilden" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Für B:" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "$$\n", "l_{1,1} = \\sqrt{\\color{red}4} = \\color{blue}2\n", "$$\n", "\n", "$$\n", "B = \\begin{bmatrix}\n", " \\color{red}4 & 2 & 2 & 8 \\\\\n", " 2 & 10 & 10 & 7 \\\\\n", " 2 & 10 & 11 & 9 \\\\\n", " 8 & 7 & 9 & 22\n", "\\end{bmatrix}\n", "\\quad\n", "L = \\begin{bmatrix}\n", "\\color{blue}2 & 0 & 0 & 0\\\\\n", "? & ? & 0 & 0\\\\\n", "? & ? & ? & 0\\\\\n", "? & ? & ? & ?\\\\\n", "\\end{bmatrix}\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "$$\n", "l_{2,1} = \\frac{1}{\\color{green}2} \\color{red}2 = \\color{blue}1\n", "$$\n", "\n", "$$\n", "B = \\begin{bmatrix}\n", " 4 & 2 & 2 & 8 \\\\\n", " \\color{red}2 & 10 & 10 & 7 \\\\\n", " 2 & 10 & 11 & 9 \\\\\n", " 8 & 7 & 9 & 22\n", "\\end{bmatrix}\n", "\\quad\n", "L = \\begin{bmatrix}\n", "\\color{green}2 & 0 & 0 & 0\\\\\n", "\\color{blue}1 & ? & 0 & 0\\\\\n", "? & ? & ? & 0\\\\\n", "? & ? & ? & ?\\\\\n", "\\end{bmatrix}\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "$$\n", "l_{2,2} = \\sqrt{\\color{red}{10} - \\color{green}1^2} = \\color{blue}3\n", "$$\n", "\n", "$$\n", "B = \\begin{bmatrix}\n", " 4 & 2 & 2 & 8 \\\\\n", " 2 & \\color{red}{10} & 10 & 7 \\\\\n", " 2 & 10 & 11 & 9 \\\\\n", " 8 & 7 & 9 & 22\n", "\\end{bmatrix}\n", "\\quad\n", "L = \\begin{bmatrix}\n", "2 & 0 & 0 & 0\\\\\n", "\\color{green}1 & \\color{blue}3 & 0 & 0\\\\\n", "? & ? & ? & 0\\\\\n", "? & ? & ? & ?\\\\\n", "\\end{bmatrix}\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "$$\n", "l_{3,1} = \\frac{1}{\\color{green}2} \\color{red}2 = \\color{blue} 1\n", "$$\n", "\n", "$$\n", "B = \\begin{bmatrix}\n", " 4 & 2 & 2 & 8 \\\\\n", " 2 & 10 & 10 & 7 \\\\\n", " \\color{red}2 & 10 & 11 & 9 \\\\\n", " 8 & 7 & 9 & 22\n", "\\end{bmatrix}\n", "\\quad\n", "L = \\begin{bmatrix}\n", "\\color{green}2 & 0 & 0 & 0\\\\\n", "1 & 3 & 0 & 0\\\\\n", "\\color{blue}1 & ? & ? & 0\\\\\n", "? & ? & ? & ?\\\\\n", "\\end{bmatrix}\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "$$\n", "l_{3,2} = \\frac{1}{\\color{green}3} (\\color{red}{10} - \\color{orange}1 \\cdot \\color{orange}1) = \\color{blue} 3\n", "$$\n", "\n", "$$\n", "B = \\begin{bmatrix}\n", " 4 & 2 & 2 & 8 \\\\\n", " 2 & 10 & 10 & 7 \\\\\n", " 2 & \\color{red}{10} & 11 & 9 \\\\\n", " 8 & 7 & 9 & 22\n", "\\end{bmatrix}\n", "\\quad\n", "L = \\begin{bmatrix}\n", "2 & 0 & 0 & 0\\\\\n", "\\color{orange}1 & \\color{green}3 & 0 & 0\\\\\n", "\\color{orange}1 & \\color{blue}3 & ? & 0\\\\\n", "? & ? & ? & ?\\\\\n", "\\end{bmatrix}\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "$$\n", "l_{3,3} = \\sqrt{\\color{red} {11} - \\color{green} 3^2 - \\color{green} 1^2} = \\color{blue}1\n", "$$\n", "\n", "$$\n", "B = \\begin{bmatrix}\n", " 4 & 2 & 2 & 8 \\\\\n", " 2 & 10 & 10 & 7 \\\\\n", " 2 & 10 & \\color{red}{11} & 9 \\\\\n", " 8 & 7 & 9 & 22\n", "\\end{bmatrix}\n", "\\quad\n", "L = \\begin{bmatrix}\n", "2 & 0 & 0 & 0\\\\\n", "1 & 3 & 0 & 0\\\\\n", "\\color{green}1 & \\color{green}3 & \\color{blue}1 & 0\\\\\n", "? & ? & ? & ?\\\\\n", "\\end{bmatrix}\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "$$\n", "l_{4,1} = \\frac{1}{\\color{green}2} \\color{red} 8 = \\color{blue}4\n", "$$\n", "\n", "$$\n", "B = \\begin{bmatrix}\n", " 4 & 2 & 2 & 8 \\\\\n", " 2 & 10 & 10 & 7 \\\\\n", " 2 & 10 & 11 & 9 \\\\\n", " \\color{red}8 & 7 & 9 & 22\n", "\\end{bmatrix}\n", "\\quad\n", "L = \\begin{bmatrix}\n", "\\color{green}2 & 0 & 0 & 0\\\\\n", "1 & 3 & 0 & 0\\\\\n", "1 & 3 & 1 & 0\\\\\n", "\\color{blue}4 & ? & ? & ?\\\\\n", "\\end{bmatrix}\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "$$\n", "l_{4,2} = \\frac{1}{\\color{green}3} \\color{red} (\\color{red}7 - \\color{orange}4 \\cdot \\color{orange}1) = \\color{blue}1\n", "$$\n", "\n", "$$\n", "B = \\begin{bmatrix}\n", " 4 & 2 & 2 & 8 \\\\\n", " 2 & 10 & 10 & 7 \\\\\n", " 2 & 10 & 11 & 9 \\\\\n", " 8 & \\color{red}7 & 9 & 22\n", "\\end{bmatrix}\n", "\\quad\n", "L = \\begin{bmatrix}\n", "2 & 0 & 0 & 0\\\\\n", "\\color{orange}1 & \\color{green}3 & 0 & 0\\\\\n", "1 & 3 & 1 & 0\\\\\n", "\\color{orange}4 & \\color{blue}1 & ? & ?\\\\\n", "\\end{bmatrix}\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "$$\n", "l_{4,3} = \\frac{1}{\\color{green}1} \\color{red} (\\color{red}9 - \\color{orange}4 \\cdot \\color{orange}1 - \\color{purple} 1 \\cdot \\color{purple} 3) = \\color{blue}2\n", "$$\n", "\n", "$$\n", "B = \\begin{bmatrix}\n", " 4 & 2 & 2 & 8 \\\\\n", " 2 & 10 & 10 & 7 \\\\\n", " 2 & 10 & 11 & 9 \\\\\n", " 8 & 7 & \\color{red}9 & 22\n", "\\end{bmatrix}\n", "\\quad\n", "L = \\begin{bmatrix}\n", "2 & 0 & 0 & 0\\\\\n", "1 & 3 & 0 & 0\\\\\n", "\\color{orange}1 & \\color{purple}3 & \\color{green}1 & 0\\\\\n", "\\color{orange}4 & \\color{purple}1 & \\color{blue}2 & ?\\\\\n", "\\end{bmatrix}\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "$$\n", "l_{4,4} = \\sqrt{\\color{red}{22} - \\color{green}4^2 - \\color{green}1^2 - \\color{green}2^2} = \\color{blue}1\n", "$$\n", "\n", "$$\n", "B = \\begin{bmatrix}\n", " 4 & 2 & 2 & 8 \\\\\n", " 2 & 10 & 10 & 7 \\\\\n", " 2 & 10 & 11 & 9 \\\\\n", " 8 & 7 & 9 & \\color{red}{22}\n", "\\end{bmatrix}\n", "\\quad\n", "L = \\begin{bmatrix}\n", "2 & 0 & 0 & 0\\\\\n", "1 & 3 & 0 & 0\\\\\n", "1 & 3 & 1 & 0\\\\\n", "\\color{green}4 & \\color{green}1 & \\color{green}2 & \\color{blue}1\\\\\n", "\\end{bmatrix}\n", "$$" ] } ], "metadata": { "celltoolbar": "Slideshow", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.1" } }, "nbformat": 4, "nbformat_minor": 4 }